Supporting Information:

Scheme S1. Optimized geometries (B3LYP/6-311+G*) and some important geometrical parameters, (bond length (R, \AA) and bond angle ((A, degree)) of different molecules

Molecules		
Bond Distances $R(1,2)=1.87: R(2.3)=R(1,3)=1.57$	$\left[\mathbf{B}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}$	
$R(1,2)=1.87, R(2,3)=R(1,3)=1.57$ $R(1,4)=\mathrm{R}(2,4)=1.82$	Bond Distances $\mathrm{R}(1,2)=1.67 ; \mathrm{R}(2,3)=\mathrm{R}(1,3)=1.56$	$\mathrm{R}(2,3)=\mathrm{R}(8,9)=1.57$
$R(4,5)=R(4,6)=2.14$	$\mathrm{R}(1,4)=\mathrm{R}(2,4)=1.89$	$\mathrm{R}(3,4)=\mathrm{R}(7,8)=1.51$
$R(4,7)=R(4,8)=2.15, R(4,9)=2.18$	$\mathrm{R}(4,5)=1.91, \mathrm{R}(4,8)=1.98$	$\mathrm{R}(1,4)=\mathrm{R}(6,7)=1.60$
$\mathrm{R}(5,6)=1.43, \mathrm{R}(6,7)=\mathrm{R}(7,8)=1.42$	$\mathrm{R}(5,6)=\mathrm{R}(7,8)=1.56$	$\mathrm{R}(1,5)=\mathrm{R}(6,5)=1.78$
$\mathrm{R}(8,9)=\mathrm{R}(9,5)=1.42$	$\mathrm{R}(6,7)=1.52, \mathrm{R}(5,8)=1.77$	$R(2,5)=R(9,5)=2.09$
Bond Angles	Bond Angles	Bond Angles
$\mathrm{A}(1,2,3)=53.28 ; \quad \mathrm{A}(3,1,2)=53.34$	$\mathrm{A}(1,2,3)=\mathrm{A}(3,1,2)=57.57 ; \quad \mathrm{A}(2,3,1)=64.86$	$\mathrm{A}(1,2,3)=\mathrm{A}(6,9,8)=104.84$ $\mathrm{~A}(2,3)=72.46 . \quad \mathrm{A}(7,8,9)=72.53$
$\mathrm{A}(2,3,1)=73.38$ $\mathrm{~A}(5,6,7)=107.88$.	$\mathrm{A}(1,4,2)=52.64 ; \quad \mathrm{A}(4,1,2)=\mathrm{A}(1,2,4)=63.68$	$\mathrm{A}(2,3,4)=72.46 ; \quad \mathrm{A}(7,8,9)=72.53$ $\mathrm{A}(3,4,1)=\mathrm{A}(6,7,8)=117.81$
$\mathrm{A}(5,6,7)=107.88 ; \mathrm{A}(6,7,8)=107.78$ $\mathrm{~A}(8,9,5)=107.72$	$\mathrm{A}(5,6,7)=73.80$	$\begin{aligned} & \mathrm{A}(3,4,1)=\mathrm{A}(6,7,8)=117.81 \\ & \mathrm{~A}(4,1,2)=64.85 ; \quad \mathrm{A}(9,6,7)=64.89 \end{aligned}$
$A(8,9,5)=107.72$ $A(7,8,9)=108.36 ; \quad A(9,5,6)=108.18$	$\mathrm{A}(6,7,8)=116.08 ; \quad \mathrm{A}(7,8,5)=67.03$ $\mathrm{~A}(8,5,6)=103.09 ; \quad \mathrm{A}(5,4,8)=54.14$	$A(4,1,2)=64.85, A(9,6,7)=64.89$ $A(1,5,2)=A(6,5,9)=53.21$
$\mathrm{A}(1,4,2)=62.18$	$\mathrm{A}(5,8,4)=64.95 ; \quad \mathrm{A}(4,5,8)=60.91$	$\mathrm{A}(1,2,5)=54.10 ; \quad \mathrm{A}(5,9,6)=54.13$
$\mathrm{A}(8,4,7)=38.61 ; \quad \mathrm{A}(7,4,6)=38.68$	$\mathrm{A}(5,6,8)=41.42 ; \quad \mathrm{A}(5,7,8)=62.10$	$A(5,6,9)=70.75 ; \quad A(2,1,5)=70.68$
$\mathrm{A}(6,4,5)=39.02$	$\mathrm{A}(6,5,7)=52.22 ; \quad \mathrm{A}(6,8,7)=61.54$	$\mathrm{A}(5,9,8)=52.56 ; \quad \mathrm{A}(4,2,3)=52.60$
$\mathrm{A}(5,4,9)=38.32 ; \quad \mathrm{A}(9,4,8)=38.23$		

	$\left[\mathrm{Al}_{4}-\mathrm{Fe}^{2}-\mathrm{Al}_{4}\right]^{2-}$ Bond Distances $\begin{aligned} & \mathrm{R}(1,2)=\mathrm{R}(4,5)=2.62 \\ & \mathrm{R}(2,3)=2.64 ; \mathrm{R}(1,4)=1.56 \\ & \mathrm{R}(7,8)=\mathrm{R}(7,9)=2.26 ; \\ & \mathrm{R}(3,7)=2.51 ; \mathrm{R}(6,7)=2.49 \\ & \mathrm{R}(3,4)=\mathrm{R}(5,6)=\mathrm{R}(1,6)=\mathrm{R}(1,7)=2.65 \\ & \mathrm{R}(4,7)=\mathrm{R}(2,7)=\mathrm{R}(5,7)=2.65 \end{aligned}$ Bond Angles $\mathrm{A}(1,2,6)=33.31 ; \quad \mathrm{A}(1,6,2)=32.82$ $\mathrm{A}(2,1,6)=113.86 ; \mathrm{A}(3,4,5)=114.49$ $\mathrm{A}(4,3,5)=\mathrm{A}(5,3,4)=32.53 ; \mathrm{A}(6,2,3)=86.35$ $\mathrm{A}(2,3,5)=93.67 ; \mathrm{A}(3,5,6)=86.12$ $\mathrm{A}(2,6,5)=93.86 ; \mathrm{A}(6,5,7)=38.59$ $\mathrm{A}(7,5,8)=39.81 ; \mathrm{A}(8,5,9)=40.26$ $\mathrm{A}(9,5,10)=39.27$	

Cp-Fe-Cp
Bond Distances
$\mathrm{R}(1,2)=\mathrm{R}(2,3)=\mathrm{R}(3,4)=\mathrm{R}(4,5)=\mathrm{R}(1,5)=1.42$
$R(7,8)=R(8,9)=R(9,10)=R(10,11)=R(7,11)=1.42$
$R(1,6)=R(2,6)=R(3,6)=R(4,6)=R(5,6)=2.08$
$R(6,7)=R(6,8)=R(6,9)=R(6,10)=R(6,11)=2.08$ Bond Angles
$A(1,2,3)=A(2,3,4)=A(3,4,5)=A(4,5,1)=A(5,1,2)=108$
$\mathrm{A}(7,8,9)=\mathrm{A}(8,9,10)=\mathrm{A}(9,10,11)=\mathrm{A}(10,11,7)=\mathrm{A}(11,7,8)=108$
$\mathrm{A}(4,6,3)=\mathrm{A}(3,6,2)=\mathrm{A}(2,6,1)=\mathrm{A}(1,6,5)=\mathrm{A}(5,6,4)=40.15$
$\mathrm{A}(10,6,9)=\mathrm{A}(9,6,8)=\mathrm{A}(8,6,7)=\mathrm{A}(7,6,11)=\mathrm{A}(11,6,10)=40.15$

Scheme S2. Optimized geometries (B3LYP/6-311+G*) and some important geometrical parameters, (bond length (R, \AA) and bond angle ((A, degree)) of different molecules

$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}$

Bond Distances

$R(1,2)=R(2,3)=R(3,4)=R(4,1)=2.20$
$R(1,5)=R(2,5)=R(3,5)=R(4,5)=2.36$
$\mathrm{R}(6,5)=\mathrm{R}(7,5)=2.07$
$R(5,8)=R(5,9)=2.09 ; R(5,10)=2.08$
$\mathrm{R}(6,7)=\mathrm{R}(7,8)=\mathrm{R}(8,9)=\mathrm{R}(9,10)=(10,1)=1.43$

Bond Angles

$\mathrm{A}(1,2,3)=\mathrm{A}(2,3,4)=89.99$
$\mathrm{A}(3,4,1)=\mathrm{A}(2,1,4)=90.00$
$\mathrm{A}(1,5,2)=55.54 ; \quad \mathrm{A}(2,5,3)=55.62$
$\mathrm{A}(3,5,4)=55.60 ; \quad \mathrm{A}(1,5,4)=55.52$
$\mathrm{A}(2,1,3)=\mathrm{A}(2,4,3)=45.00$
$\mathrm{A}(1,2,4)=\mathrm{A}(1,3,4)=44.99$
$\mathrm{A}(6,5,7)=40.44 ; \quad \mathrm{A}(7,5,8)=40.15$
$\mathrm{A}(8,5,9)=39.85 ; \quad \mathrm{A}(9,5,10)=39.95$
$\mathrm{A}(6,5,10)=40.31 ; \mathrm{A}(6,7,8)=107.95$
$\mathrm{A} 7,8,9)=108.03$
$\mathrm{A} 8,9,10)=108.11 \quad \mathrm{~A}(9,10,1)=108.00$

$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}$
Bond Distances
$R(1,2)=R(2,3)=R(3,4)=R(4,1)=1.40$ $R(1,5)=R(2,5)=R(3,5)=R(4,5)=1.98$ $R(6,5)=R(8,5)=2.07$, $R(9,5)=R(10,5)=2.08 ; R(7,5)=2.06$, $R(6,7)=R(7,8)=R(8,9)=R(9,10)=(10,1)=1.43$

Bond Angles

$\mathrm{A}(1,2,3)=\mathrm{A}(1,4,3)=\mathrm{A}(2,1,4)=90.00$ $\mathrm{A}(2,3,4)=89.99$
$\mathrm{A}(1,5,2)=41.26 \quad \mathrm{~A}(2,5,3)=41.28$ $\mathrm{A}(3,5,4)=41.27 ; \quad \mathrm{A}(1,5,4)=41.24$, $\mathrm{A}(2,1,3)=\mathrm{A}(2,4,3)=45.00$
$\mathrm{A}(1,2,4)=\mathrm{A}(1,3,4)=44.99$
$\mathrm{A}(6,5,7)=40.42 ; \quad \mathrm{A}(7,5,8)=40.50$
$\mathrm{A}(8,5,9)=40.30$
$\mathrm{A}(9,5,10)=40.10 \quad \mathrm{~A}(6,5,10)=40.17$
$\mathrm{A}(6,7,8)=107.92$
$\mathrm{A} 7,8,9)=107.95 ; \quad \mathrm{A}(8,9,10)=108.05$
$\mathrm{A}(9,10,1)=108.07$

$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}$
Bond Distances
$R(1,5)=R(4,5)=2.43 ; R(1,2)=R(1,4)=2.22$
$R(2,3)=2.24 ; \quad R(3,4)=2.21$
$\mathrm{R}(2,5)=\mathrm{R}(3,5)=2.29$
$\mathrm{R}(6,7)=1.59 ; \quad \mathrm{R}(7,8)=1.52 ; \quad \mathrm{R}(8,9)=1.57$
$R(5,9)=1.98 ; R(5,6)=1.85 ; R(6,9)=1.75$
Bond Angles
$\mathrm{A}(6,5,9)=54.16 ; \quad \mathrm{A}(5,9,6)=59.06$
$\mathrm{A}(5,6,9)=66.77$
$\mathrm{A}(6,7,9)=61.60 ; \quad \mathrm{A}(7,8,9)=71.48$
$\mathrm{A}(7,6,9)=65.19 ; \quad \mathrm{A}(7,9,8)=52.81$
$\mathrm{A}(1,5,2)=55.99 ; \quad \mathrm{A}(2,5,3)=58.50$
$\mathrm{A}(3,5,4)=55.56$
$\mathrm{A}(1,5,4)=54.33$;
$\mathrm{A}(2,1,3)=45.35 ; \quad \mathrm{A}(2,4,3)=45.64$
$\mathrm{A}(1,2,4)=45.09 ; \quad \mathrm{A}(1,3,4)=45.81$
$\mathrm{A}(2,1,4)=\mathrm{A}(1,2,3)=89.81$
$\mathrm{A}(1,4,3)=90.74 ; \quad \mathrm{A}(2,3,4)=89.63$

Scheme S3. Optimized geometries (B3LYP/6-311+G*) and some important geometrical parameters, (bond length $\left(\mathrm{R}, \AA\right.$), and bond angle($\left(\mathrm{A}\right.$, degree)) of $\mathrm{Mg}_{4} \mathrm{Be}_{4}$ and different $\left[\mathrm{Mg}_{4} \mathrm{Be}_{4}-\right.$ M] metal clusters

$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Be}$

Bond Distances

$R(1,2)=R(2,3)=R(3,4)=R(4,1)=2.16$ $R(5,6)=R(7,8)=R(6,7)=R(8,5)=3.46$ $R(4,5)=R(4,8)=R(2,6)=R(2,7)=2.47$ $R(1,5)=R(1,6)=R(3,8)=R(3,7)=2.47$

Bond Angles

$\mathrm{A}(1,4,3)=\mathrm{A}(1,2,3)=90.00$ $\mathrm{A}(4,1,2)=\mathrm{A}(2,3,4)=90.00$ $\mathrm{A}(1,5,4)=\mathrm{A}(4,8,3)=51.81$ $\mathrm{A}(3,7,2)=\mathrm{A}(2,6,1)=51.81$ $\mathrm{A}(6,5,8)=\mathrm{A}(5,8,7)=90.00$ $\mathrm{A}(8,7,6)=\mathrm{A}(7,6,5)=90.00$

$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Mg}$

Bond Distances

$R(1,2)=R(2,3)=R(3,4)=R(4,1)=2.10$ $R(5,6)=R(7,8)=3.39 ; R(6,7)=R(8,5)=$ 3.26
$R(4,5)=R(4,8)=R(2,6)=R(2,7)=2.58$
$R(1,5)=R(1,6)=R(3,8)=R(3,7)=2.53$
Bond Angles
$\mathrm{A}(1,4,3)=\mathrm{A}(1,2,3)=115.11$
$\mathrm{A}(4,1,2)=\mathrm{A}(2,3,4)=64.82$
$\mathrm{A}(1,5,4)=\mathrm{A}(4,8,3)=48.55$
$\mathrm{A}(3,7,2)=\mathrm{A}(2,6,1)=48.55$ $\mathrm{A}(6,5,8)=\mathrm{A}(5,8,7)=90.00$ $\mathrm{A}(8,7,6)=\mathrm{A}(7,6,5)=90.00$

$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Ti}$

Bond Distances

$\mathrm{R}(1,2)=\mathrm{R}(2,3)=\mathrm{R}(3,4)=\mathrm{R}(4,1)=2.07$
$R(5,6)=R(7,8)=R(6,7)=R(8,5)=2.96$ $R(4,5)=R(4,8)=R(2,6)=R(2,7)=2.57$ $R(1,5)=R(1,6)=R(3,8)=R(3,7)=2.57$

Bond Angles

$\mathrm{A}(1,4,3)=\mathrm{A}(1,2,3)=90.00$
$\mathrm{A}(4,1,2)=\mathrm{A}(2,3,4)=90.00$
$\mathrm{A}(1,5,4)=\mathrm{A}(4,8,3)=47.53$
$A(3,7,2)=A(2,6,1)=47.53$
$\mathrm{A}(6,5,8)=\mathrm{A}(5,8,7)=90.00$
$\mathrm{A}(8,7,6)=\mathrm{A}(7,6,5)=90.00$

$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Ca}$
Bond Distances
$\mathrm{R}(1,2)=\mathrm{R}(2,3)=\mathrm{R}(3,4)=\mathrm{R}(4,1)=2.09$
$R(5,6)=R(7,8)=3.55$
$R(6,7)=R(8,5)=3.27$
$R(4,5)=R(4,8)=R(2,6)=R(2,7)=2.53$
$R(1,5)=R(1,6)=R(3,8)=R(3,7)=2.52$

Bond Angles

$\mathrm{A}(1,4,3)=\mathrm{A}(1,2,3)=114.65$
$\mathrm{A}(4,1,2)=\mathrm{A}(2,3,4)=65.32$
$\mathrm{A}(1,5,4)=\mathrm{A}(4,8,3)=48.97$
$\mathrm{A}(3,7,2)=\mathrm{A}(2,6,1)=48.97$
$\mathrm{A}(6,5,8)=\mathrm{A}(5,8,7)=90.00$
$\mathrm{A}(8,7,6)=\mathrm{A}(7,6,5)=90.00$

$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Cr}$

Bond Distances

$R(1,2)=R(2,3)=R(3,4)=R(4,1)=2.07$
$R(5,6)=R(7,8)=3.19$
$R(6,7)=R(8,5)=3.43$
$\mathrm{R}(4,5)=\mathrm{R}(4,8)=\mathrm{R}(2,6)=\mathrm{R}(2,7)=2.56$ $R(1,5)=R(1,6)=R(3,8)=R(3,7)=2.51$

Bond Angles

$\mathrm{A}(1,4,3)=\mathrm{A}(1,2,3)=115.92$
$\mathrm{A}(4,1,2)=\mathrm{A}(2,3,4)=63.82$
$A(1,5,4)=A(4,8,3)=48.16$
$\mathrm{A}(3,7,2)=\mathrm{A}(2,6,1)=48.16$
$\mathrm{A}(6,5,8)=\mathrm{A}(5,8,7)=90.00$ $A(8,7,6)=A(7,6,5)=90.00$

$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Zn}$

Bond Distances

$\mathrm{R}(1,2)=\mathrm{R}(2,3)=\mathrm{R}(3,4)=\mathrm{R}(4,1)=2.11$
$\mathrm{R}(5,6)=\mathrm{R}(7,8)=2.22 ; \mathrm{R}(6,7)=\mathrm{R}(8,5)=3.23$
$R(4,5)=R(4,8)=R(2,6)=R(2,7)=2.62$
$\mathrm{R}(1,5)=\mathrm{R}(1,6)=\mathrm{R}(3,8)=\mathrm{R}(3,7)=2.54$

Bond Angles

$\mathrm{A}(1,4,3)=\mathrm{A}(1,2,3)=114.06$ $\mathrm{A}(4,1,2)=\mathrm{A}(2,3,4)=65.88$ $\mathrm{A}(1,5,4)=\mathrm{A}(4,8,3)=48.23$ $\mathrm{A}(3,7,2)=\mathrm{A}(2,6,1)=48.23$ $\mathrm{A}(6,5,8)=\mathrm{A}(5,8,7)=90.00$ $\mathrm{A}(8,7,6)=\mathrm{A}(7,6,5)=90.00$

$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{B}$

Bond Distances

$R(1,2)=R(2,3)=R(3,4)=R(4,1)=2.21$ $R(5,6)=R(7,8)=R(6,7)=R(8,5)=3.19$ $R(4,5)=R(4,8)=R(2,6)=R(2,7)=2.48$ $R(1,5)=R(1,6)=R(3,8)=R(3,7)=2.48$

Bond Angles

$\mathrm{A}(1,4,3)=\mathrm{A}(1,2,3)=90.00$
$\mathrm{A}(4,1,2)=\mathrm{A}(2,3,4)=90.00$ $\mathrm{A}(1,5,4)=\mathrm{A}(4,8,3)=52.77$
$\mathrm{A}(3,7,2)=\mathrm{A}(2,6,1)=52.77$
$\mathrm{A}(6,5,8)=\mathrm{A}(5,8,7)=90.00$
$\mathrm{A}(8,7,6)=\mathrm{A}(7,6,5)=90.00$

$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{C}$

Bond Distances

$R(1,2)=R(2,3)=R(3,4)=R(4,1)=2.19$ $R(5,6)=R(7,8)=R(6,7)=R(8,5)=3.05$ $R(4,5)=R(4,8)=R(2,6)=R(2,7)=2.50$ $R(1,5)=R(1,6)=R(3,8)=R(3,7)=2.50$

Bond Angles
$\mathrm{A}(1,4,3)=\mathrm{A}(1,2,3)=90.00$ $\mathrm{A}(4,1,2)=\mathrm{A}(2,3,4)=90.00$ $\mathrm{A}(1,5,4)=\mathrm{A}(4,8,3)=51.92$ $\mathrm{A}(3,7,2)=\mathrm{A}(2,6,1)=51.92$ $\mathrm{A}(6,5,8)=\mathrm{A}(5,8,7)=90.00$ $\mathrm{A}(8,7,6)=\mathrm{A}(7,6,5)=90.00$

Scheme S4. Optimized geometries (B3LYP/6-311+G*) and some important bond lengths(R, \AA) of two different $\mathrm{Be}_{6}-\mathrm{Mg}$ isomers and the transition state separating them.

$8(\mathrm{~Bq})=$ Dummy atom at the center of the planar Be_{6} ring.	
$\begin{aligned} & \mathrm{Be}_{6}-\mathrm{M} \\ & \mathbf{E}=\mathbf{- 2 8} \\ & \mathrm{R} 17=2.74, \mathrm{R} 27=2.71, \mathrm{R} 37=2.6 \end{aligned}$	(C_{2}) TS 364 (a.u.) $\mathrm{R} 47=2.74, \mathrm{R} 57=2.71, \mathrm{R} 67=2.63$

Table S1. Total Energy (E, au), electronegativity (χ, eV), hardness (η, eV), electrophilicity (ω, eV) of different molecules involved in the substitution reactions

Molecules	$\mathbf{E}(\mathbf{a u})$	$\boldsymbol{\chi}(\mathbf{e V})$	$\boldsymbol{\eta}(\mathbf{e V})$	$\boldsymbol{\omega}(\mathbf{e V})$
$\mathrm{Al}_{4}{ }^{2-}$	-969.741	-3.629	1.957	3.364
$\mathrm{~B}_{4}{ }^{2-}$	-99.088	-5.135	1.711	7.705
$\mathrm{~B}_{3}{ }^{-}$	-74.397	-0.678	3.368	0.068
Cp^{-}	-193.570	-1.512	3.423	0.334
$\mathrm{Cp-Fe}-\mathrm{Cp}$	-1650.883	3.400	3.695	1.564
$\left.[\mathrm{Cp-}-\mathrm{Fe}-\mathrm{Al}]_{4}\right]^{-}$	-2427.117	0.066	1.747	0.001
$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{-}$	-3203.326	-2.391	1.423	2.008
$\left[\mathrm{Cp-Fe}-\mathrm{B}_{4}\right]^{-}$	-1556.565	-0.301	2.128	0.021
$\left[\mathrm{~B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}$	-1462.183	-3.183	1.512	3.351
$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{-}$	-2332.783	-2.961	1.649	2.658
$\mathrm{~B}_{3}-\mathrm{Fe}-\mathrm{B}_{3}$	-1412.411	5.543	2.491	6.168
$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}$	-2307.909	0.797	1.273	0.250
$\left[\mathrm{~B}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}$	-1437.380	0.803	1.724	0.187
${\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{3}}^{2}$	-1531.634	4.610	2.349	4.523

Table S2. Total Energy (E, au), electronegativity (χ, eV), hardness (η, eV), electrophilicity (ω, eV) of different molecules involved in the substitution reactions

Molecules	$\mathbf{E ~ (a u)}$	$\boldsymbol{\chi}(\mathbf{e V})$	$\boldsymbol{\eta}(\mathbf{e V})$	$\boldsymbol{\omega}(\mathbf{e V})$
$\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}$	-1701.573	-3.551	1.996	3.158
$\left[\mathrm{P}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}$	-3994.880	-2.959	2.013	2.175
$\left[\mathrm{~N}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}$	-2848.227	-3.121	1.923	2.532
$\left[\mathrm{~B}_{3}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}$	-2703.703	0.675	1.950	0.117
$\left[\mathrm{~B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}$	-1462.183	-3.183	1.512	3.351
$\left[\mathrm{~B}_{3}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}$	-1557.068	0.985	2.041	0.236
$\mathrm{~B}_{3}-\mathrm{Fe}-\mathrm{B}_{3}$	-1412.411	5.543	2.491	6.168
$\left[\mathrm{~B}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}$	-1581.862	-3.332	1.272	4.365
$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}$	-2822.930	0.019	2.589	0.000
$\left[\mathrm{~B}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}$	-2728.518	-3.144	1.419	3.484
$\left[{\left.\mathrm{Cp}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}}^{-1676.292}\right.$	0.020	2.860	0.000	
$\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$	-1650.883	3.400	3.695	1.564
Cp^{-}	-193.570	-1.512	3.423	0.334
$\mathrm{~B}_{3}{ }^{-}$	-74.397	-0.678	3.368	0.068
$\mathrm{~B}_{4}{ }^{2-}$	-99.088	-5.135	1.711	7.705
$\mathrm{~N}_{4}{ }^{2-}$	-218.781	-7.633	3.836	7.595
$\mathrm{P}_{4}{ }^{2-}$	-1365.475	-4.560	2.514	4.135

Table S3. Point group (PG), Nucleus independent chemical shift (NICS, ppm) values at different rings of molecules

Molecules	PG	NICS(0),ppm	
$\mathrm{Al}_{4}{ }^{2-}$	$\mathrm{D}_{4 \mathrm{~h}}$	-34.473	
$\mathrm{~B}_{4}{ }^{2-}$	$\mathrm{D}_{4 \mathrm{~h}}$	-44.785	
$\mathrm{~B}_{3}{ }^{-}$	$\mathrm{D}_{3 \mathrm{~h}}$	-73.599	
Cp^{-}	$\mathrm{D}_{5 \mathrm{~h}}$	-12.531	
$\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$	$\mathrm{D}_{5 \mathrm{~h}}$	$\mathrm{Cp}(-45.871)$	$\mathrm{Cp}(-45.871)$
$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{Cp}\right]^{-}$	C_{s}	$\mathrm{Al}_{4}(-19.329)$	$\mathrm{Cp}(-31.470)$
$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{2-}$	$\mathrm{C}_{2 \mathrm{~h}}$	$\mathrm{Al}_{4}(2,3,5,6)$	(29583.330)
$\left[{\left.\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{-}}^{\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}}\right.$	C_{1}	$\mathrm{~B}_{4}(-16.178)$	$\mathrm{Cp}(-56.558)$
$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}$	C_{2}	$\mathrm{~B}_{4}(-25.549)$	$\mathrm{B}_{4}(-25.680)$
$\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{B}_{3}$	C_{s}	$\mathrm{Al}_{4}(158.627)$	$\mathrm{B}_{4}(-30.502)$
$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}$	$\mathrm{D}_{2 \mathrm{~d}}$	$\mathrm{~B}_{3}(-31.871)$	$\mathrm{B}_{3}(-31.867)$
$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}$	C_{s}	$\mathrm{B}_{3}(-2.813)$	$\mathrm{Al}_{4}(-10.268)$
${\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{3}}$	C_{s}	$\mathrm{B}_{3}(9.598)$	$\mathrm{B}_{4}(9.530)$

Table S4. Point group (PG), Nucleus independent chemical shift (NICS, ppm) values at different rings of molecules

Molecules	PG	NICS(0),ppm	
$\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}$	S_{8}	$\mathrm{N}_{4}(-32.859)$	$\mathrm{N}_{4}(-32.896)$
$\left[\mathrm{P}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}$	S_{8}	$\mathrm{P}_{4}(-8.988)$	$\mathrm{P}_{4}(-9.005)$
$\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}$	$\mathrm{C}_{4 \mathrm{v}}$	$\mathrm{N}_{4}(-20.631)$	$\mathrm{P}_{4}(-19.478)$
$\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}$	$\mathrm{C}_{2 \mathrm{v}}$	$\mathrm{P}_{4}(24.924)$	$\mathrm{B}_{3}(5.191)$
$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}$	C_{2}	$\mathrm{B}_{4}(-24.490)$	$\mathrm{B}_{4}(-8.252)$
$\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}$	$\mathrm{C}_{\text {s }}$	$\mathrm{N}_{4}(-59.576)$	$\mathrm{B}_{3}(-61.762)$
$\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{B}_{3}$	$\mathrm{D}_{2 \mathrm{~d}}$	$\mathrm{B}_{3}(-31.871)$	$\mathrm{B}_{3}(-31.867)$
$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}$	C_{1}	$\mathrm{N}_{4}(-7.598)$	$\mathrm{B}_{4}(-4.076)$
[$\left.\mathrm{Cp}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}$	C_{s}	$\mathrm{P}_{4}(-15.059)$	Cp(-39.158)
$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}$	C_{1}	$\mathrm{B}_{4}(-24.450)$	$\mathrm{P}_{4}(-8.252)$
$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}$	C_{1}	Cp(-50.737)	$\mathrm{N}_{4}(-28.157)$
Cp-Fe-Cp	$\mathrm{D}_{5 \mathrm{~h}}$	Сp (-45.871)	Cp (-45.871)
Cp^{-}	$\mathrm{D}_{5 \mathrm{~h}}$	-12.531	
$\mathrm{B}_{3}{ }^{-}$	$\mathrm{D}_{3 \mathrm{~h}}$	-73.599	
$\mathrm{B}_{4}{ }^{\text {- }}$	$\mathrm{D}_{4 \mathrm{~h}}$	-44.785	
$\mathrm{N}_{4}{ }^{2-}$	$\mathrm{D}_{4 \mathrm{~h}}$	4.051	
$\mathrm{P}_{4}{ }^{\text {- }}$	$\mathrm{D}_{4 \mathrm{~h}}$	9.692	

Table S5: Atomic charges ($Q_{k,,}(\mathrm{NPA})$) and Fukui functions $\left(f_{k}{ }^{+}, f_{k}{ }^{-} \mathrm{eV}\right.$, (NPA)) values for different molecules involved in the substitution reactions

Molecules	Unit	Atomic charge ($Q_{\boldsymbol{k}}$)	$\mathrm{f}_{\boldsymbol{k}}{ }^{+}$(NPA)	$f_{k}{ }^{-}$(NPA)
$\begin{gathered} \mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp} \\ \left(\mathrm{D}_{5 \mathrm{~h}}\right) \end{gathered}$	$\begin{aligned} & \mathrm{Cp} \\ & \mathrm{Cp} \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & \hline-0.251,-0.251,-0.251,-0.251,-0.251 \\ & -0.251,-0.251,-0.251,-0.251,-0.251 \end{aligned}$ 0.218	$\begin{gathered} \hline-0.074,0.034,0.005,0.005,0.034 \\ 0.005,0.003,-0.074,0.034,0.005 \\ 0.899 \end{gathered}$	$0.037,0.038,0.036,0.036,0.038$ $0.036,0.038,0.037,0.038,0.036$ 0.286
$\begin{gathered} {\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{-}} \\ \left(\mathrm{C}_{\mathrm{s}}\right) \end{gathered}$	$C p$ Al_{4} Fe	$\begin{gathered} \hline-0.339,-0.340,-0.343,-0.345,-0.347 \\ 0.261,0.253,0.250,0.254 \\ -1.408 \end{gathered}$	$\begin{gathered} \hline 0.002,0.002,0.005,0.005,0.008 \\ 0.333,0.331,0.325,0.331 \\ -0.371 \end{gathered}$	$\begin{gathered} \hline 0.021,0.036,0.009,0.004,0.020 \\ 0.186,0.077,0231,0.074 \\ 0.280 \end{gathered}$
$\begin{gathered} {\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{2-}} \\ \left(\mathrm{C}_{2 \mathrm{~h}}\right) \end{gathered}$	Al_{4} Al_{4} Fe	$\begin{gathered} -0.204,-0.196,-0.038,0.336 \\ -0.042,0.336,-0.203,-0.194 \\ -1.797 \end{gathered}$	$\begin{gathered} 0.206,0.215,0.089,0.147 \\ 0.089,0.148,0.209,0.214 \\ -0.316 \end{gathered}$	$\begin{gathered} \hline 0.236,0.194,0.050,0.076 \\ 0.052,0.074,0.237,0.191 \\ -0.110 \end{gathered}$
$\begin{gathered} {\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{-}} \\ \left(\mathrm{C}_{1}\right) \end{gathered}$	Cp B_{4} Fe	$\begin{gathered} -0.300,-0.281,-0.305,-0.256,-0.336 \\ -0.320,-0.136,-0.234,-0.029 \\ -0.029 \end{gathered}$	$\begin{gathered} 0.003,0.027,0.025,0.019,0.010 \\ 0.042,0.068,0.027,0.028 \\ 0.576 \end{gathered}$	$\begin{gathered} 0.012,0.055,0.025,-0.002,0.052 \\ 0.114,0.239,-0.048,0.043 \\ 0.547 \end{gathered}$
$\begin{gathered} {\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}} \\ \left(\mathrm{C}_{2}\right) \end{gathered}$	B_{4} B_{4} Fe	$\begin{gathered} 0.065,-0.298,-0.376,-0.286 \\ -0.376,-0.286,0.065,-0.299 \\ -0.209 \end{gathered}$	$\begin{gathered} 0.010,0.001,0.018,0.031 \\ 0.018,0.030,0.010,0.001 \\ 0.881 \end{gathered}$	$\begin{gathered} 0.006,-0.030,0.070,0.248 \\ 0.072,0.243,0.005,-0.042 \\ 0.427 \end{gathered}$
$\begin{gathered} {\left[\mathrm{Al}_{4}-\mathrm{Fe}_{-} \mathrm{B}_{4}\right]^{2-}} \\ \left(\mathrm{C}_{\mathrm{s}}\right) \end{gathered}$	Al_{4} B_{4} Fe	$\begin{gathered} 0.291,0.025,0.287,0.121 \\ -0.364,-0.278,-0.178,-0.267 \\ -1.638 \end{gathered}$	$\begin{gathered} 0.263,0.121,0.283,0.111 \\ 0.023,-0.028,0.160,0.065 \\ 0.002 \end{gathered}$	$\begin{gathered} 0.107,0.282,0.079,0.287 \\ 0.023,0.035,0.122,0.062 \\ 0.002 \end{gathered}$
$\begin{gathered} \mathrm{B}_{3}-\mathrm{Fe}-\mathrm{B}_{3} \\ \left(\mathrm{D}_{2 \mathrm{~d}}\right) \end{gathered}$	B_{3} B_{3} Fe	$\begin{gathered} 0.093,0.092,-0.047 \\ 0.093,-0.047,0.093 \\ -0.278 \end{gathered}$	$\begin{gathered} 0.115,0.110,0.284 \\ 0.112,0.287,0.118 \\ -0.026 \end{gathered}$	$\begin{gathered} 0.014,0.015,0.204 \\ 0.014,0.204,0.014 \\ 0.536 \end{gathered}$
$\begin{gathered} {\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}} \\ \left(\mathrm{C}_{\mathrm{s}}\right) \end{gathered}$	Al_{4} B_{3} Fe	$\begin{gathered} 0.268,-0.025,-0.316,0.026 \\ -0.124,-0.163,-0.125 \\ -0.540 \end{gathered}$	$\begin{gathered} 0.282,0.213,0.082,0.308 \\ 0.159,0.159,0.159 \\ -0.363 \end{gathered}$	$\begin{gathered} -0.012,-0.070,0.244,0.252 \\ -0.038,0.176,-0.041 \\ 0.489 \end{gathered}$
$\begin{gathered} {\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}} \\ \left(\mathrm{C}_{\mathrm{s}}\right) \end{gathered}$	$\begin{aligned} & \mathrm{B}_{4} \\ & \mathrm{~B}_{3} \\ & \mathrm{Fe} \end{aligned}$	$\begin{gathered} -0.065,-0.258,-0.011,-0.189 \\ -0.169,-0.166,-0.168 \\ 0.026 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.254,0.073,0.167,0.095 \\ 0.146,0.210,0.146 \\ -0.091 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.187,0.146,0.002,-0.016 \\ 0.028,0.315,0.028 \end{gathered}$ 0.311
$\begin{gathered} \mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{3} \\ \left(\mathrm{C}_{1}\right) \end{gathered}$	Cp B_{3} Fe	$\begin{gathered} \hline-0.272,-0.248,-0.272,-0.256,-0.269 \\ 0.031,-0.016,0.026 \\ 0.102 \end{gathered}$	$\begin{gathered} 0.037,0.044,0.032,0.041,0.038 \\ 0.208,0.294,0.206 \\ -0.002 \end{gathered}$	$\begin{gathered} \hline 0.018,0.057,0.011,0.048,0.033 \\ 0.002,0.315,0.003 \\ 0.371 \\ \hline \end{gathered}$

Table S6: Atomic charges (Q_{k}, NPA) and Fukui functions $\left(f_{k}{ }^{+}, f_{k}^{-}, \mathrm{eV}\right.$, (NPA)) values for nucleophilic and electrophilic attacks respectively for different molecules involved in the substitution reactions

Molecules	Unit	Atomic charges (Q_{k})	f^{+}(NPA)	$\boldsymbol{f}_{\boldsymbol{k}}{ }^{-}$(NPA)
$\begin{gathered} {\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}} \\ \left(\mathrm{S}_{8}\right) \end{gathered}$	N_{4}	-0.321,-0.323,-0.321,-0.320	0.013,0.011,0.013,0.007	0.091,0.086,0.090,0.086
	N_{4}	-0.321,-0.320,-0.322,-0.323	0.013,0.007,0.013, 0.011	0.088,0.089,0.088,0.089
	Fe	0.570	0.913	0.294
$\begin{gathered} {\left[\mathrm{P}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}} \\ \left(\mathrm{S}_{8}\right) \end{gathered}$	P_{4}	-0.138,-0.138,-0.138,-0.138	0.029,0.029,0.029,0.029	0.093,0.094,0.095,0.094
	P_{4}	-0.138,-0.138,-0.138,-0.138	0.029,0.029,0.029,0.029	0.095,0.094,0.093,0.094
	Fe	-0.897	0.771	0.247
$\begin{gathered} {\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}} \\ \left(\mathrm{C}_{4} \mathrm{~V}\right) \end{gathered}$	N_{4}	-0.259,-0.259,-0.259,-0.259	0.011,0.010,0.011,0.010	0.053,0.052,0.053,0.052
	P_{4}	-0.247,-0.247,-0.247,-0.247	0.029,0.029,0.028,0.030	$0.148,0.146,0.148,0.146$
	Fe	0.024	0.843	0.200
$\begin{gathered} {\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}} \\ \left(\mathrm{C}_{2} \mathrm{~V}\right) \end{gathered}$	P_{4}	-0.059,-0.152,-0.057	0.124.284,0.121	-0.029,0.298,-0.031
	B_{3}	-0.117,-0.117,-0.117,-0.117	0.163,0.163,0.151,0.154	0.110,0.115,0.112,0.114
	Fe	-0.262	-0.161	0.311
$\begin{gathered} {\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}} \\ \left(\mathrm{C}_{2}\right) \end{gathered}$	B_{4}	$0.065,-0.298,-0.376,-0.286$	0.010,0.001,0.018,0.031	0.006,-0.030,0.070,0.248
	B_{4}	-0.376,-0.286,0.065,-0.267	0.018,0.030,0.010,0.001	0.072,0.243, $0.005,-0.042$
	Fe	-0.209	0.881	0.427
$\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}$ (C_{s})	B_{3}	-0.357,-0.106,-0.146	0.091,0.374,0.170	0.201,0.274,0.056
	N_{4}	-0.180,-0.252,-0.257,-0.181	0.074,0.100,0.095, 0.074	$0.045,0.061,0.063,0.052$
	Fe	0.478	0.024	0.249
$\begin{gathered} \mathrm{B}_{3}-\mathrm{Fe}-\mathrm{B}_{3} \\ \left(\mathrm{D}_{2} \mathrm{~d}\right) \end{gathered}$	${ }^{B_{3}}$	0.093, 0.092,-0.047	$0.115,0.110, .284$	0.014,0.015,0.204
	B_{3}	0.093,-0.047,0.093	0.112,0.287,0.118	0.014,0.204, 0.014
	Fe	-0.278	-0.026	0.536
$\begin{gathered} {\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}} \\ \left(\mathrm{C}_{1}\right) \end{gathered}$	B_{4}	-0.266,-0.144,-0.402,-0.322	0.071,0.059,0.052,0.077	-0.049,0.078,0.104,0.298
	N_{4}	-0.279,-0.286,-0.325,-0.288	0.017,0.024,0.016,0.0191	0.029,0.070,0.042,0.098
	Fe	0.312	0.656	0.329
$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}$ (C C_{s})	${ }^{\text {Cp }}$	-0.265,-0.269,-0.269,-0.267,-0.263	0.045,0.012,0.012,0.045,-0.087	0.020,0.019,0.019,0.020,0.020
	P_{4}	-0.129,-0.127,-0.131,-0.132	0.032,0.030,0.033,0.032	$0.144,0.145,0.144,0.144$
	Fe	-. 230	0.824	0.189
$\begin{gathered} {\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}} \\ \left(\mathrm{C}_{1}\right) \end{gathered}$	B_{4}	-0.178,0.029,-0.391,-0.256	0.021,0.108,0.012,0.096	$-0.070,-0.011,0.095,0.249$
	P_{4}	-0.140,-0.324,-0.315,-0.114	0.045,-0.007,0.007,0.050	0.086,0.127,0.115,0.066
	Fe	-0.311	0.660	0.342
$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}$$\left(\mathrm{C}_{1}\right)$	Cp	-0.299,-0.298,-0.0297,-0.296,-0.295	0.032,0.033,-0.069,-0.069,0.058	0.038,0.038,0.039,0.040,0.041
	N_{4}	-0.248,-0.246,-0.248,-0.247	0.065,-0.064,-0.065,0.065	0.080,0.081,0.085, 0.079
	Fe	0.432	0.928	0.302
[Cp-Fe-Cp]	${ }^{\text {Cp }}$	-0.251,-0.251,-0.251,-0.251,-0.251	-0.074,0.034,0.005,0.005,0.034	${ }^{0.037,0.038,0.036,0.036,0.038}$
	Cp	-0.251,-0.251,-0.251,-0.251,-0.251	0.005,0.003,-0.074,0.034,0.005	0.036,0.038,0.037,0.038, , 0.036
($\mathrm{D}_{5 \mathrm{~h}}$)	Fe	0.218	0.899	0.286

Table S7: Reaction enthalpy ($\Delta \mathrm{H}, \mathrm{Kcal} / \mathrm{mole}$) and reaction electrophilicity ($\Delta \omega, \mathrm{eV}$) values of different molecules which are involved in the substitution reactions

No.	Reactions	$\begin{gathered} \Delta H \\ \text { (Kcal/mole) } \end{gathered}$	$\Delta \omega(\mathrm{eV})$
1	$\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}+\mathrm{Al}_{4}{ }^{2-}=\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{+}+\mathrm{Cp}^{-}$	-99.305	-4.592
2	$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{-}+\mathrm{Al}_{4}{ }^{2-}=\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{2-}+\mathrm{Cp}^{-}$	-81.875	-1.022
3	$\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{-}+\mathrm{Cp}{ }^{-}$	-104.845	-8.913
4	$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{-}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{Cp}^{-}$	-63.361	-4.041
5	$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}+\mathrm{Al}_{4}{ }^{2-}=\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{2-}+\mathrm{B}_{3}{ }^{-}$	-102.995	-1.537
6	$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{B}_{3}{ }^{-}$	-69.878	-4.473
7	$\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{B}_{3}+\mathrm{Al}_{4}{ }^{2-}=\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}+\mathrm{B}_{3}{ }^{-}$	-153.169	-9.213
8	$\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{B}_{3}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}+\mathrm{B}_{3}{ }^{-}$	-173.312	-13.618
9	$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{Cp}\right]^{-}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{Cp}^{-}$	-92.741	-4.715
10	$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{2-}+\mathrm{B}_{3}{ }^{-}$	-113.68	-5.229
11	$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{-}+\mathrm{Al}_{4}{ }^{2-}=\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{Cp}^{-}$	-87.202	-0.393
12	$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{Al}_{4}{ }^{2-}=\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{B}_{4}{ }^{2-}$	-23.841	3.648
13	$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{3}\right]^{-}+\mathrm{Al}_{4}{ }^{2-}=\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{B}_{3}{ }^{-}$	-93.72	-0.825
14	$\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{Al}_{4}\right]^{2-}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{Al}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{Al}_{4}{ }^{2-}$	-10.866	-3.692
15	$\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{B}_{3}+\mathrm{Cp}=\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{3}+\mathrm{B}_{3}{ }^{-}$	-29.251	-1.911
16	$\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{3}+\mathrm{Cp}^{-}=\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}+\mathrm{B}_{3}{ }^{-}$	-45.733	-3.225

Table S8: Reaction enthalpy $(\Delta \mathrm{H})$ and reaction electrophilicity $(\Delta \omega)$ values of different molecules which are involved in the substitution reactions

Table 9: Energy (E, au), electronegativity (χ, eV), hardness (η, eV), and electrophilicity (ω, eV) for different atoms invole in the formation of different $\left[\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{M}\right]$ clusters

No	Reactions	$\Delta \mathbf{H}$ (Kcal/mole)	$\Delta \omega(\mathrm{eV})$
1	$\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{B}_{3}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}+\mathrm{B}_{3}{ }^{-}$	-171.014	-13.458
2	$\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}+\mathrm{B}_{3}{ }^{-}$	-75.733	-4.605
3	$\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}+\mathrm{P}_{4}{ }^{2-}$	-36.930	-3.339
4	$\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{B}_{3}+\mathrm{P}_{4}{ }^{2-}=\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}+\mathrm{B}_{3}{ }^{-}$	-134.084	-10.118
5	$\left[\mathrm{B}_{3}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}+\mathrm{P}_{4}{ }^{2-}=\left[\mathrm{P}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}+\mathrm{B}^{3-}$	-61.692	-2.010
6	$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}+\mathrm{P}_{4}{ }^{2-}$	-23.917	-2.578
7	$\left[\mathrm{P}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}+\mathrm{P}_{4}{ }^{2-}$	-25.863	-3.102
8	$\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}+\mathrm{P}_{4}{ }^{2-}$	-25.108	-2.833
9	$[\mathrm{Cp}-\mathrm{Fe}-\mathrm{P} 4]^{-}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}+\mathrm{P}_{4}{ }^{2-}$	-34.942	-3.459
10	$\left[\mathrm{P}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}+\mathrm{P}_{4}{ }^{2-}$	-14.997	-2.260
11	$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{P}_{4}{ }^{2-}$	-32.416	-3.703
12	$\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{3}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}+\mathrm{B}_{3}{ }^{-}$	-171.850	-12.049
13	$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}+\mathrm{B}_{4}{ }^{2-}$	-12.056	-1.097
14	$\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}+\mathrm{B}_{4}{ }^{2-}=\left[\mathrm{B}_{4}-\mathrm{Fe}-\mathrm{B}_{4}\right]^{2-}+\mathrm{N}_{4}{ }^{2-}$	-8.498	-1.125
15	$\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}+\mathrm{P}_{4}{ }^{2-}=\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}+\mathrm{Cp}^{-}$	-91.175	-5.365
16	$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}+\mathrm{P}_{4}{ }^{2-}=\left[\mathrm{P}_{4}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{2-}+\mathrm{Cp}^{-}$	-29.618	-1.627
17	$\mathrm{Cp}-\mathrm{Fe}-\mathrm{B}_{3}+\mathrm{P}_{4}{ }^{2-}=\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{P}_{4}\right]^{-}+\mathrm{B}_{3}{ }^{-}$	-136.908	-8.590
18	$\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}+\mathrm{Cp}^{-}$	-126.118	-8.824
19	$\left[\mathrm{Cp}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{-}+\mathrm{N}_{4}{ }^{2-}=\left[\mathrm{N}_{4}-\mathrm{Fe}-\mathrm{N}_{4}\right]^{2-}+\mathrm{Cp}^{-}$	-45.646	-4.102

Atoms	$\mathbf{E}(\mathbf{a u})$	$\boldsymbol{\chi}(\mathbf{e V})$	$\boldsymbol{\eta}(\mathbf{e V})$	$\boldsymbol{\omega}(\mathbf{e V})$
Li	-7.491	3.087	2.529	1.884
Na	-162.287	3.003	2.418	1.864
K	-599.926	2.510	1.986	1.586
Be	-14.671	4.445	4.671	2.115
Mg	-200.093	3.752	3.976	1.770
Ca	-677.576	3.085	3.069	1.551
Sc	-760.621	3.506	4.607	1.334
Ti	-849.290	3.648	2.098	3.172
Cr	-1044.224	3.879	1.560	4.821
Zn	-1779.354	4.199	5.230	1.685
C	-37.792	5.706	4.064	4.006
B	-24.662	4.189	4.545	1.930

Table S10: Point group (PG), energy (E, au), electronegativity (χ, eV), hardness (η, eV), and electrophilicity (ω, eV) for different metal clusters

Molecules	PG	E (au)	$\boldsymbol{\chi}(\mathbf{e V})$	$\boldsymbol{\eta}(\mathbf{e V})$	$\boldsymbol{\omega}(\mathbf{e V})$
Be_{4}	$\mathrm{D}_{4 \mathrm{~h}}$	-58.766	3.688	2.261	3.007
Mg_{4}	$\mathrm{D}_{4 \mathrm{~h}}$	-800.309	2.987	1.508	2.959
$\mathrm{Mg}_{4} \mathrm{Be}_{4}$	$\mathrm{C}_{2 \mathrm{v}}$	-859.276	3.526	1.792	3.468
$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Li}$	$\mathrm{C}_{2 \mathrm{v}}$	-866.838	3.423	1.821	3.217
$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Na}$	C_{1}	-1021.618	3.301	1.792	3.040
$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{K}$	$\mathrm{C}_{2 \mathrm{v}}$	-1459.259	3.118	1.770	2.747
$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Be}$	$\mathrm{C}_{4 \mathrm{v}}$	-874.050	3.694	2.020	3.377
$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Mg}$	$\mathrm{C}_{2 \mathrm{v}}$	-1059.404	3.545	1.874	3.353
$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Ca}$	$\mathrm{C}_{2 \mathrm{v}}$	-1536.917	3.245	1.872	2.812
$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Sc}$	$\mathrm{C}_{4 \mathrm{v}}$	-1620.007	3.319	1.805	3.051
$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Ti}$	$\mathrm{C}_{4 \mathrm{v}}$	-1708.722	3.580	1.562	4.103
$\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Cr}$	$\mathrm{C}_{2 \mathrm{v}}$	-1903.673	2.906	1.131	3.734
$\mathrm{Mg}_{4} \mathrm{Be} 4-\mathrm{Zn}$	$\mathrm{C}_{2 \mathrm{v}}$	-2638.652	3.766	1.881	3.770
$\mathrm{Mg}_{4} \mathrm{Be} \mathrm{Be}_{4}-\mathrm{B}$	$\mathrm{C}_{4 \mathrm{v}}$	-884.168	3.401	1.954	3.752
$\mathrm{Mg}_{4} \mathrm{Be} 4-\mathrm{C}$	$\mathrm{C}_{4 \mathrm{v}}$	-897.466	3.830	2.399	2.410

Table S11: Nucleus independent chemical shift (NICS(0), ppm) values at different rings of the molecules

| Molecules | $\left.\begin{array}{c}\text { NICS(0) } \\ \text { Ring(Mg }\end{array}\right)$ | $\left.\begin{array}{c}\text { NICS(0) } \\ \text { Ring(Be }\end{array}\right)$ |
| :--- | :---: | :---: | :--- | :---: | :---: |

Table S12: Formation reactions of different metal clusters and their reaction enthalpy ($\Delta \mathrm{H}$, $\mathrm{Kcal} / \mathrm{mole}$) and reaction electrophilicity ($\Delta \omega, \mathrm{eV}$) values

Formation Reactions	$\Delta \mathbf{H}$ (Kcal/mole)	$\Delta \boldsymbol{\omega}$ (eV)
$\mathrm{Mg}_{4}+\mathrm{Be}_{4}=\mathrm{Mg}_{4} \mathrm{Be}_{4}$	-123.979	-2.498
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{Li}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Li}$	-4.456	-0.780
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{Na}=\mathrm{Mg}_{4} \mathrm{Be} e_{4}-\mathrm{Na}$	-34.067	-0.743
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{K}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{K}$	-35.452	-0.556
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{Be}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Be}$	-23.163	-2.206
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{Mg}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Mg}$	-21.830	-1.885
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{Ca}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Ca}$	-40.587	-2.206
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{Sc}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Sc}$	-68.793	-1.751
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{Ti}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Ti}$	-97.014	-2.537
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{Cr}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Cr}$	-108.320	-4.555
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{Zn}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Zn}$	-14.264	-1.383
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{B}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{B}$	-142.402	-1.646
$\mathrm{Mg}_{4} \mathrm{Be}_{4}+\mathrm{C}=\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{C}$	-247.214	-5.064

Table S13: Atomic charges $\left(Q_{k}(N P A)\right)$ and Fukui functions $\left(f_{k}^{+}, f_{k}^{-}, \mathrm{eV},(\mathrm{NPA})\right)$ and philicity $\left(\omega_{k}{ }^{+}\right.$, $\left.\omega_{k}{ }^{-}, \mathrm{eV},(\mathrm{NPA})\right)$ values for nucleophilic and electrophilic attacks respectively for different metal cluster

Molecules	Unit	Atomic Charge $\left(Q_{k}\right)(N P A)$	f_{k}^{+}(NPA)	$f_{k}^{\text {- }}$ (NPA)	ω_{k}^{+}(NPA)	$\omega_{k}{ }^{-}$(NPA)
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4} \\ \left(\mathrm{C}_{2 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	$0.346,0.347$	0.136, 0.137	0.099, 0.099	0.472, 0.474	0.343, 0.342
		$0.346,0.346$	0.136, 0.137	0.099, 0.099	0.473, 0.474	$0.343,0.342$
	Be_{4}	-0.211, -0.482	0.096, 0.130	0.156, 0.148	0.333, 0.451	$0.541,0.513$
		-0.483, -0.210	0.130, 0.098	0.148, 0.153	0.452, 0.339	0.514, 0.530
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Li} \\ \left(\mathrm{C}_{2 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	0.333, 0.334	0.148, 0.148	0.154, 0.155	0.476, 0.476	0.497, 0.498
		0.336, 0.336	0.148, 0.148	0.155, 0.154	0.477, 0.477	0.497, 0.498
	Be_{4}	-0.259, -0.564	0.049, 0.091	0.046, 0.100	0.158, 0.292	0.148, 0.321
		-0.575, -0.263	0.078, 0.047	0.091, 0.047	0.250, 0.153	0.294, 0.150
	Li	0.322	0.143	0.097	0.459	0.314
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Na} \\ \left(\mathrm{C}_{1}\right) \end{gathered}$	Mg_{4}	0.339, 0.328	0.147, 0.145	0.145, 0.143	0.446, 0.440	0.441, 0.435
		0.326, 0.315	0.138, 0.135	0.143, 0.140	$0.419,0.410$	$0.434,0.425$
	Be_{4}	-0.287, -0.569	0.039, 0.045	0.048, 0.067	0.117, 0.136	0.146, 0.203
		-0.491, -0.252	0.106, 0.044	0.112, 0.052	$0.323,0.133$	0.341, 0.157
	Na	0.291	0.203	0.151	0.616	0.458
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{K} \\ \left(\mathrm{C}_{2 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	$0.313,0.314$	0.136, 0.136	0.137, 0.137	0.374, 0.374	0.377, 0.375
		0.313, 0.314	0.136, 0.136	0.137, 0.137	0.375, 0.374	$0.378,0.375$
	Be_{4}	-0.302, -0.567	0.036, 0.063	0.058, 0.096	$0.099,0.173$	0.159, 0.264
		-0.568, -0.298	0.063, 0.037	0.095, 0.052	0.173, 0.102	0.262, 0.143
	K	0.482	0.256	0.150	0.704	0.413
$\underset{\left(\mathrm{C}_{4 \mathrm{v}}\right)}{\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Be}}$	Mg_{4}	0.343, 0.344	0.106, 0.106	0.088, 0.088	0.358, 0.358	0.298, 0.298
		0.344, 0.344	0.106, 0.106	0.088, 0.088	0.358, 0.359	0.298, 0.298
	Be_{4}	-0.400, -0.401	0.081, 0.081	0.139, 0.137	0.275, 0.274	0.470, 0.463
		-0.401, -0.401	0.081, 0.081	0.137, 0.139	0.274, 0.273	0.463, 0.468
	Be	0.230	0.250	0.095	0.846	0.322
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Mg} \\ \left(\mathrm{C}_{2 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	0.266, 0.266	0.105, 0.105	0.163, 0.163	0.352, 0.352	0.547, 0.548
		0.264, 0.264	0.104, 0.104	0.164, 0.164	0.348, 0.348	0.550, 0.551
	Be_{4}	-0.269, -0.489	-0.020, 0.232	0.050, 0.078	-0.050, 0.779	0.166, 0.261
		-0.491, -0.270	0.229, -0.020	0.080, 0.050	0.767, -0.050	$0.267,0.167$
	Mg	0.459	0.153	0.088	0.512	0.297
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Ca} \\ \left(\mathrm{C}_{2 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	0.270, 0.270	0.090, 0.090	0.297, 0.297	0.254, 0.257	0.236, 0.234
		0.270, 0.270	0.090, 0.091	0.297, 0.297	0.252, 0.254	$0.235,0.234$
	Be_{4}	-0.311, -0.594	-0.000, 0.172	0.205, -0.010	-0.000, 0.483	0.576, -0.035
		-0.594, -0.310	0.170, 0.002	-0.010, 0.202	0.477, 0.007	-0.039, 0.569
	Ca	0.729	0.295	0.286	0.830	0.803
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Sc} \\ \left(\mathrm{C}_{4 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	0.320, 0.319	0.082, 0.081	0.083, 0.083	$0.249,0.247$	0.252, 0.253
		0.320, 0.320	0.079, 0.079	0.082, 0.082	$0.243,0.240$	0.251, 0.251
	Be_{4}	-0.093, -0.090	0.082, 0.081	0.081, 0.083	0.289, 0.289	0.247, 0.253
		-0.090, -0.093	0.079, 0.079	0.080, 0.082	0.271, 0.284	0.245, 0.251
	Sc	-0.913	0.082	0.344	0.940	1.048
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Ti} \\ \left(\mathrm{C}_{4 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	0.357, 0.357	0.128, 0.128	0.059, 0.059	0.527, 0.527	0.241, 0.241
		0.357, 0.357	0.128, 0.128	0.059, 0.059	0.527, 0.527	$0.241,0.241$
	Be_{4}	0.068, 0.069	0.131, 0.132	0.107, 0.106	0.540, 0.541	0.440, 0.437
		0.069, 0.068	0.131, 0.132	0.106, 0.107	0.541, 0.540	0.437, 0.440
	Ti	-1.703	-0.040	0.337	-0.160	1.384
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Cr} \\ \left(\mathrm{C}_{2 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	0.323, 0.323	0.122, 0.123	0.143, 0.143	0.455, 0.458	0.535, 0.534
		0.323, 0.324	0.122, 0.123	0.143, 0.143	0.456, 0.459	0.535, 0.533
	Be_{4}	0.036, -0.115	0.008, 0.019	0.021, 0.003	0.030, 0.071	0.079, 0.012
		-0.114, 0.038	0.019, 0.010	0.002, 0.091	0.072, 0.037	0.009, 0.071

	Cr	-1.139	0.454	0.382	1.696	1.426
$\underset{\left(\mathrm{C}_{2 \mathrm{v}}\right)}{\mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{Zn}}$	Mg_{4}	$0.254,0.254$	0.102, 0.099	0.162, 0.162	0.385, 0.375	0.609, 0.611
		0.256, 0.255	0.104, 0.101	0.161, 0.161	0.393, 0.382	0.607, 0.609
	Be_{4}	-0.233, -0.395	-0.011, 0.272	0.022, 0.134	-0.040, 1.025	0.082, 0.505
		-0.391, -0.234	0.277, -0.020	0.128, 0.023	1.043, -0.080	0.483, 0.089
	Zn	0.233	0.075	0.046	0.285	0.174
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{B} \\ \left(\mathrm{C}_{4 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	0.356, 0.355	0.956, 0.955	0.113, 0.115	$0.359,0.355$	0.425, 0.433
		$0.355,0.356$	0.956, 0.955	0.113, 0.115	$0.359,0.356$	0.425, 0.432
	Be_{4}	0.489, 0.482	0.177,0.109	0.089, 0.094	0.438, 0.408	$0.333,0.353$
		0.482, 0.481	0.109, 0.109	0.094, 0.097	0.410, 0.409	0.351, 0.365
	B	-3.356	0.175	0.169	0.658	0.635
$\begin{gathered} \mathrm{Mg}_{4} \mathrm{Be}_{4}-\mathrm{C} \\ \left(\mathrm{C}_{4 \mathrm{v}}\right) \end{gathered}$	Mg_{4}	0.351, 0.353	0.104, 0.092	0.094, 0.094	0.251, 0.221	0.226, 0.226
		0.351, 0.352	0.090, 0.106	0.094, 0.094	0.218, 0.255	$0.227,0.226$
	Be_{4}	$0.487,0.489$	$0.034,0.251$	$0.130,0.116$	$0.082,0.605$	$0.314,0.279$
		0.487, 0.484	0.248, 0.033	0.122, 0.128	0.598, 0.079	0.294, 0.308
	C	-3.353	0.042	0.129	0.100	0.311

Table S14: Energy (E, au), Point Group (PG), Electronegativity (χ, eV), Chemical Hardness (η, eV) and Electrophilicity (ω, eV) values of two different $\mathrm{Be}_{6}-\mathrm{Mg}$ isomers.

Isomers	$\mathbf{E ~ (a . u .) ~}$	PG 2	$\boldsymbol{\chi}(\mathbf{e V})$	$\boldsymbol{\eta}(\mathbf{e V})$	$\boldsymbol{\omega}(\mathbf{e V})$
$\mathrm{Be}_{6}-\mathrm{Mg}(\mathrm{I})$	-288.370	$\mathrm{C}_{6 \mathrm{v}}$	3.715	1.949	3.541
$\mathrm{Be}_{6}-\mathrm{Mg}(\mathrm{TS})$	-288.364	C_{2}	3.848	1.952	3.792
$\mathrm{Be}_{6}-\mathrm{Mg}$ (II)	-288.370	$\mathrm{C}_{6 \mathrm{v}}$	3.713	1.949	3.537

Table S15: Nucleus independent chemical shift (NICS(0),ppm), atomic charges (Q_{K}, NPA) and Fukui function ($f k^{+}, f k, e \mathrm{eV},(\mathrm{NPA})$) values for nucleophilic and electrophilic attacks respectively of two different $\mathrm{Be}_{6}-\mathrm{Mg}$ isomers.

Isomers	Unit	NICS(0)	Atomic Charges $\mathbf{(\mathbf { Q } _ { \mathbf { K } })}$	$\boldsymbol{f k}^{+} \mathbf{(N P A)}$	$\boldsymbol{f k}^{-}(\mathbf{N P A})$
$\mathrm{Be}_{6}-\mathrm{Mg}(\mathrm{I})$ $\left(\mathrm{C}_{6} \mathrm{~V}\right)$	Be_{6}		$-0.042,-0.042,-0.042$	$0.115,0.156,0.157$	$0.155,0.155,0.155$
	Mg	0.93	$-0.042,-0.042,-0.042$	$0.115,0.154,0.154$	$0.155,0.155,0.155$
$\mathrm{Be}_{6}-\mathrm{Mg}(\mathrm{II})$	Be_{6}		0.252	0.148	0.069
$\left(\mathrm{C}_{6} \mathrm{~V}\right)$	Mg	1.00	$-0.042,-0.041,-0.041$	$0.155,0.1185,0.159$	$0.156,0.1536,0.153$,
		$0.042,-0.042$	$0.156,0.1516,0.112$	$0.154,0.157,0.157$	

