

Scheme S1. Optimized geometries $(B3LYP/6-311+G^*)$ and some important geometrical parameters, (bond length (R, Å) and bond angle ((A, degree)) of different molecules

Scheme S2. Optimized geometries $(B3LYP/6-311+G^*)$ and some important geometrical parameters, (bond length (R, Å) and bond angle ((A, degree)) of different molecules

[Cp-Fe-P₄]⁻ **Bond Distances** R(1,2)=R(2,3)=R(3,4)=R(4,1)=2.20R(1,5)=R(2,5)=R(3,5)=R(4,5)=2.36R(6,5)=R(7,5)=2.07R(5,8)=R(5,9)=2.09; R(5,10)=2.08R(6,7)=R(7,8)=R(8,9)=R(9,10)=(10,1)=1.43**Bond Angles** A(1,2,3)= A(2,3,4)=89.99 A(3,4,1)=A(2,1,4)=90.00 A(1,5,2)=55.54; A(2,5,3)=55.62 A(3,5,4)=55.60; A(1,5,4)=55.52 A(2,1,3) = A(2,4,3) = 45.00A(1,2,4)= A(1,3,4)= 44.99 A(6,5,7)=40.44; A(7,5,8)=40.15 A(8,5,9)=39.85; A(9,5,10)=39.95 A(6,5,10)=40.31; A(6,7,8)=107.95 A7,8,9)=108.03 A8,9,10)= 108.11 A(9,10,1)=108.00

[Cp-Fe-N₄]⁻ **Bond Distances** R(1,2)=R(2,3)=R(3,4)=R(4,1)=1.40R(1,5)=R(2,5)=R(3,5)=R(4,5)=1.98R(6,5)=R(8,5)=2.07, R(9,5)=R(10,5)=2.08; R(7,5)=2.06,R(6,7)=R(7,8)=R(8,9)=R(9,10)=(10,1)=1.43**Bond Angles** A(1,2,3) = A(1,4,3) = A(2,1,4) = 90.00A(2,3,4) = 89.99A(1,5,2)=41.26 A(2,5,3)=41.28 A(3,5,4)=41.27; A(1,5,4)=41.24, A(2,1,3) = A(2,4,3) = 45.00A(1,2,4) = A(1,3,4) = 44.99A(6,5,7)=40.42; A(7,5,8)=40.50 A(8,5,9)=40.30 A(9,5,10)=40.10 A(6,5,10)=40.17 A(6,7,8)=107.92 A7,8,9)=107.95; A(8,9,10)=108.05 A(9,10,1)=108.07

 $[B_4 - Fe - P_4]^{2-}$ **Bond Distances** R(1,5)=R(4,5)=2.43; R(1,2)=R(1,4)=2.22R(2,3)=2.24; R(3,4)=2.21 R(2,5)=R(3,5)=2.29R(6,7)=1.59; R(7,8)=1.52; R(8,9)=1.57 R(5,9)=1.98; R(5,6)=1.85; R(6,9)=1.75 **Bond Angles** A(6,5,9)=54.16; A(5,9,6)=59.06 A(5,6,9)=66.77 A(6,7,9)=61.60; A(7,8,9)=71.48 A(7,6,9)=65.19; A(7,9,8)=52.81 A(1,5,2)=55.99; A(2,5,3)=58.50 A(3,5,4)=55.56 A(1,5,4)=54.33; A(2,1,3)=45.35; A(2,4,3)=45.64 A(1,2,4)=45.09; A(1,3,4)=45.81 A(2,1,4)= A(1,2,3)=89.81 A(1,4,3)=90.74; A(2,3,4)=89.63

Scheme S3. Optimized geometries (B3LYP/6-311+G*) and some important geometrical parameters, (bond length(R,Å), and bond angle((A, degree)) of Mg₄Be₄ and different [Mg₄Be₄-M] metal clusters

$\label{eq:mg4Be4-Zn} \begin{array}{c} Mg_4Be_4\text{-}Zn\\ \textbf{Bond Distances}\\ R(1,2)=R(2,3)=R(3,4)=R(4,1)=2.11\\ R(5,6)=R(7,8)=2.22;\ R(6,7)=R(8,5)=3.23\\ R(4,5)=R(4,8)=R(2,6)=R(2,7)=2.62\\ R(1,5)=R(1,6)=R(3,8)=R(3,7)=2.54\\ \textbf{Bond Angles} \end{array}$

A(1,4,3)=A(1,2,3)=114.06

 $\begin{array}{l} A(4,1,2)=A(2,3,4)=65.88\\ A(1,5,4)=A(4,8,3)=48.23\\ A(3,7,2)=A(2,6,1)=48.23\\ A(6,5,8)=A(5,8,7)=90.00\\ A(8,7,6)=A(7,6,5)=90.00 \end{array}$

Mg₄Be₄-B Bond Distances

 $\begin{array}{l} R(1,2) = R(2,3) = R(3,4) = R(4,1) = 2.21 \\ R(5,6) = R(7,8) = R(6,7) = R(8,5) = 3.19 \\ R(4,5) = R(4,8) = R(2,6) = R(2,7) = 2.48 \\ R(1,5) = R(1,6) = R(3,8) = R(3,7) = 2.48 \\ \textbf{Bond Angles} \end{array}$

$\begin{array}{l} A(1,4,3) = A(1,2,3) = 90.00\\ A(4,1,2) = A(2,3,4) = 90.00\\ A(1,5,4) = A(4,8,3) = 52.77\\ A(3,7,2) = A(2,6,1) = 52.77\\ A(6,5,8) = A(5,8,7) = 90.00 \end{array}$

A(8,7,6)=A(7,6,5)=90.00

Mg₄Be₄-C Bond Distances

R(1,2)=R(2,3)=R(3,4)=R(4,1)=2.19R(5,6)=R(7,8)= R (6,7)=R(8,5)= 3.05 R(4,5)=R(4,8)= R(2,6)=R(2,7)= 2.50 R(1,5)=R(1,6)=R(3,8)=R(3,7)=2.50

Bond Angles

 $\begin{array}{l} A(1,4,3)=A(1,2,3)=90.00\\ A(4,1,2)=A(2,3,4)=90.00\\ A(1,5,4)=A(4,8,3)=51.92\\ A(3,7,2)=A(2,6,1)=51.92\\ A(6,5,8)=A(5,8,7)=90.00\\ A(8,7,6)=A(7,6,5)=90.00 \end{array}$

Scheme S4. Optimized geometries $(B3LYP/6-311+G^*)$ and some important bond lengths(R, Å) of two different Be₆-Mg isomers and the transition state separating them.

Table S1. Total Energy (E, au), electronegativity (χ , eV), hardness (η , eV), electrophilicity (ω , eV) of different molecules involved in the substitution reactions

Molecules	E(au)	χ (eV)	η (eV)	ω (eV)
Al_4^{2-}	-969.741	-3.629	1.957	3.364
${\rm B_4}^{2-}$	-99.088	-5.135	1.711	7.705
B ₃ -	-74.397	-0.678	3.368	0.068
Cp	-193.570	-1.512	3.423	0.334
Cp-Fe-Cp	-1650.883	3.400	3.695	1.564
[Cp-Fe-Al ₄]	-2427.117	0.066	1.747	0.001
$\left[Al_4-Fe-Al_4\right]^{2-1}$	-3203.326	-2.391	1.423	2.008
[Cp-Fe-B ₄] ⁻	-1556.565	-0.301	2.128	0.021
$[B_4-Fe-B_4]^{2-1}$	-1462.183	-3.183	1.512	3.351
$[Al_4-Fe-B_4]^{2-1}$	-2332.783	-2.961	1.649	2.658
B ₃ -Fe-B ₃	-1412.411	5.543	2.491	6.168
[Al ₄ -Fe-B ₃] ⁻	-2307.909	0.797	1.273	0.250
$[B_4$ -Fe- $B_3]^-$	-1437.380	0.803	1.724	0.187
Cp-Fe-B ₃	-1531.634	4.610	2.349	4.523

Table S2. Total Energy (E, au), electronegativity (χ, eV), hardness (η, eV), electrophilicity (ω, eV) of different molecules involved in the substitution reactions

Molecules	E (au)	χ (eV)	η (eV)	ω (eV)
ΓΝΙ Γ. ΝΙ 1 ² -	1701 572	2 5 5 1	1 006	2 1 5 9
$[N_4 - Fe - N_4]$	-1/01.3/3	-3.331	1.990	3.138
$[P_4-Fe-P_4]^2$	-3994.880	-2.959	2.013	2.175
$[N_4$ -Fe-P ₄] ²⁻	-2848.227	-3.121	1.923	2.532
$[B_3$ -Fe-P ₄] ⁻	-2703.703	0.675	1.950	0.117
$[B_4-Fe-B_4]^{2-1}$	-1462.183	-3.183	1.512	3.351
$[B_3$ -Fe-N ₄] ⁻	-1557.068	0.985	2.041	0.236
B ₃ -Fe-B ₃	-1412.411	5.543	2.491	6.168
$[B_4$ -Fe-N ₄] ²⁻	-1581.862	-3.332	1.272	4.365
[Cp-Fe-P ₄] ⁻	-2822.930	0.019	2.589	0.000
$[B_4-Fe-P_4]^{2-1}$	-2728.518	-3.144	1.419	3.484
[Cp-Fe-N ₄] ⁻	-1676.292	0.020	2.860	0.000
Cp-Fe-Cp	-1650.883	3.400	3.695	1.564
Cp	-193.570	-1.512	3.423	0.334
B_3^-	-74.397	-0.678	3.368	0.068
${B_4}^{2-}$	-99.088	-5.135	1.711	7.705
N_4^{2-}	-218.781	-7.633	3.836	7.595
P_4^{2-}	-1365.475	-4.560	2.514	4.135

Molecules	PG	NICS(0),ppm		
Al_4^{2-}	D_{4h}	-34.4	73	
${\rm B_4}^{2-}$	D _{4h}	-44.7	85	
B ₃ -	D _{3h}	-73.5	99	
Cp	D _{5h}	-12.5	31	
Cp-Fe-Cp	D _{5h}	Cp (-45.871)	Cp (-45.871)	
[Al ₄ -Fe-Cp]	Cs	Al ₄ (-19.329)	Cp (-31.470)	
$[Al_4$ -Fe-Al ₄] ²⁻	C _{2h}	Al ₄ (2,3,5,6) (295	583.330)	
[Cp-Fe-B ₄]	C ₁	B ₄ (-16.178)	Cp (-56.558)	
$[B_4-Fe-B_4]^{2-}$	C ₂	B ₄ (-25.549)	B ₄ (-25.680)	
$\left[Al_4\text{-}Fe\text{-}B_4\right]^{2\text{-}}$	Cs	Al ₄ (158.627)	B ₄ (-30.502)	
B ₃ -Fe-B ₃	D _{2d}	B ₃ (-31.871)	B ₃ (-31.867)	
[Al ₄ -Fe-B ₃] ⁻	Cs	B ₃ (-2.813)	Al ₄ (-10.268)	
$[B_4-Fe-B_3]^2$	Cs	B ₃ (9.598)	B ₄ (9.530)	
Cp-Fe-B ₃	C ₁	B ₃ (-6.740)	Cp(-12.926)	

Table S3. Point group (PG), Nucleus independent chemical shift (NICS, ppm) values at different rings of molecules

Table S4. Point group (PG), Nucleus independent chemical shift (NICS, ppm) values at different rings of molecules

Molecules	PG	NICS(0),ppm		
$[N_4-Fe-N_4]^{2-}$	S ₈	N ₄ (-32.859)	N ₄ (-32.896)	
$[P_4-Fe-P_4]^{2-}$	S ₈	P ₄ (-8.988)	P ₄ (-9.005)	
$[N_4-Fe-P_4]^{2-}$	C_{4v}	N ₄ (-20.631)	P ₄ (-19.478)	
$[B_3-Fe-P_4]^{-1}$	C _{2v}	P ₄ (24.924)	B ₃ (5.191)	
$[B_4-Fe-B_4]^{2-}$	C ₂	B ₄ (-24.490)	B ₄ (-8.252)	
$[B_3-Fe-N_4]^-$	Cs	N ₄ (-59.576)	B ₃ (-61.762)	
B ₃ -Fe-B ₃	D _{2d}	B ₃ (-31.871)	B ₃ (-31.867)	
$[B_4-Fe-N_4]^{2-}$	C ₁	N ₄ (-7.598)	B ₄ (-4.076)	
[Cp-Fe-P ₄] ⁻	Cs	P ₄ (-15.059)	Cp(-39.158)	
$[B_4-Fe-P_4]^{2-}$	C ₁	B ₄ (-24.450)	P ₄ (-8.252)	
[Cp-Fe-N ₄] ⁻	C1	Cp(-50.737)	N ₄ (-28.157)	
Cp-Fe-Cp	D_{5h}	Cp (-45.871)	Cp (-45.871)	
Cp	D_{5h}	-12.531		
B ₃	D _{3h}	-73.599		
B4 ²⁻	D _{4h}	-44.785		
N4 ²⁻	D _{4h}	4.051		
P_4^{2-}	D _{4h}	9.692		

Molecules	Unit	Atomic charge (O_{1})	f.+(NPA)	$f_k^{-}(NPA)$
withecutes	Um	Atomic charge (Q_k)	J_k (INI A)	
Cp-Fe-Cp Cp		-0.251,-0.251,-0.251,-0.251,-0.251	-0.074, 0.034, 0.005, 0.005, 0.034 0.005, 0.003, -0.074, 0.034, 0.005	0.037,0.038,0.036,0.036,0.038
(D_{5h}) Cp		-0.251,-0.251,-0.251,-0.251	0.005,0.005,-0.074,0.054,0.005	0.050,0.058,0.057,0.058,0.050
	Fe	0.218	0.899	0.286
	Ср	-0.339,-0.340,-0.343,-0.345,-0.347	0.002,0.002,0.005,0.005,0.008	0.021,0.036,0.009,0.004,0.020
[Cp-Fe-Al ₄] ⁻	Al₄	0.261,0.253,0.250,0.254	0.333,0.331,0.325,0.331	0.186,0.077,0231,0.074
(C _s)	Fe	-1.408	-0.371	0.280
	Al₄	-0.204,-0.196,-0.038,0.336	0.206,0.215,0.089,0.147	0.236,0.194,0.050,0.076
$[Al_4-Fe-Al_4]^{2-1}$	Al ₄	-0.042,0.336,-0.203,-0.194	0.089,0.148,0.209,0.214	0.052,0.074,0.237,0.191
(C _{2h})	Fe	-1.797	-0.316	-0.110
	Ср	-0.300,-0.281,-0.305,-0.256,-0.336	0.003,0.027,0.025,0.019,0.010	0.012,0.055,0.025,-0.002,0.052
$[Cp-Fe-B_4]^-$	B4	-0.320,-0.136,-0.234,-0.029	0.042,0.068,0.027,0.028	0.114,0.239,-0.048,0.043
(C_1)	Fe	-0.029	0.576	0.547
2	B4	0.065,-0.298,-0.376,-0.286	0.010,0.001,0.018,0.031	0.006,-0.030,0.070,0.248
$[B_4-Fe-B_4]^{2-1}$	B4	-0.376,-0.286,0.065,-0.299	0.018,0.030,0.010,0.001	0.072,0.243,0.005,-0.042
(C ₂)	Fe	-0.209	0.881	0.427
	Al₄	0.291,0.025,0.287,0.121	0.263,0.121,0.283,0.111	0.107,0.282,0.079,0.287
$[Al_4-Fe-B_4]^{2^2}$	B4	-0.364,-0.278,-0.178,-0.267	0.023,-0.028,0.160,0.065	0.023,0.035,0.122,0.062
(C _s)	Fe	-1.638	0.002	0.002
	B ₃	0.093,0.092,-0.047	0.115,0.110,0.284	0.014,0.015,0.204
B ₃ -Fe-B ₃	B ₃	0.093,-0.047,0.093	0.112,0.287,0.118	0.014,0.204,0.014
(D_{2d})	Fe	-0.278	-0.026	0.536
	Al ₄	0.268,-0.025,-0.316,0.026	0.282,0.213,0.082,0.308	-0.012,-0.070,0.244,0.252
$[Al_4-Fe-B_3]^-$	B ₃	-0.124,-0.163,-0.125	0.159,0.159,0.159	-0.038,0.176,-0.041
(C_s)	Fe	-0.540	-0.363	0.489
	B ₄	-0.065,-0.258,-0.011,-0.189	0.254,0.073,0.167,0.095	0.187,0.146,0.002,-0.016
$\begin{bmatrix} \mathbf{D}_4 - \mathbf{\Gamma} \cdot \mathbf{C} - \mathbf{D}_3 \end{bmatrix}$	B ₃	-0.169,-0.166,-0.168	0.146,0.210,0.146	0.028,0.315,0.028
(Cs)	Fe	0.026	-0.091	0.311
Cp-Fe-B ₃	Cp	-0.272,-0.248,-0.272,-0.256,-0.269	0.037,0.044,0.032,0.041,0.038	0.018,0.057,0.011,0.048,0.033
(C ₁)	В3	0.031,-0.016,0.026	0.208,0.294,0.206	0.002,0.315,0.003
	Fe	0.102	-0.002	0.371

Table S5: Atomic charges $(Q_{k,i}(NPA))$ and Fukui functions $(f_k^+, f_k^- eV, (NPA))$ values for different molecules involved in the substitution reactions

Table S6: Atomic charges(Q_k , NPA) and Fukui functions(f_k^+ , f_k^- , eV, (NPA)) values for nucleophilic and electrophilic attacks respectively for different molecules involved in the substitution reactions

10	actions					
Molecules	Unit	Atomic charges (Q_k)	f_k^+ (NPA)	f_k (NPA)		
ENT E NU 12-	N	0.221 0.222 0.221 0.220	0.012.0.011.0.012.0.007	0.001.0.086.0.000.0.086		
[N ₄ -Fe-N ₄]	IN ₄	-0.321,-0.323,-0.321,-0.320	0.013,0.011,0.013,0.007	0.091,0.086,0.090,0.086		
(S_8)	N_4	-0.321,-0.320,-0.322,-0.323	0.013,0.007,0.013,0.011	0.088,0.089,0.088,0.089		
(0)	Fe	0.570	0.913	0.294		
$[\mathbf{P}_{-}\mathbf{F}_{\mathbf{P}_{-}}\mathbf{P}_{-}]^{2-}$	P4	-0 138 -0 138 -0 138 -0 138	0 029 0 029 0 029 0 029	0 093 0 094 0 095 0 094		
	D.	0.138, 0.138, 0.138, 0.138	0.029,0.029,0.029,0.029	0.005.0.004.0.003.0.004		
(S_8)	14	-0.136,-0.136,-0.136,-0.136	0.029,0.029,0.029,0.029	0.095,0.094,0.095,0.094		
	Fe	-0.897	0.771	0.247		
$[N_4$ -Fe-P $_1$] ²⁻	N_4	-0.259,-0.259,-0.259,-0.259	0.011,0.010,0.011,0.010	0.053,0.052,0.053,0.052		
$(C \rightarrow)$	P ₄	-0 247 -0 247 -0 247 -0 247	0 029 0 029 0 028 0 030	0 148 0 146 0 148 0 146		
$(C_4 V)$	- 4	0.217, 0.217, 0.217, 0.217	0.023,0.023,0.020,0.030	0.110,0.110,0.110,0.110		
	E	0.024	0.942	0.200		
	ге	0.024	0.843	0.200		
$[B_3-Fe-P_4]^-$	P_4	-0.059,-0.152,-0.057	0.124.284,0.121	-0.029,0.298,-0.031		
$(C_{2}V)$	B_3	-0.117,-0.117,-0.117,-0.117	0.163,0.163,0.151,0.154	0.110,0.115,0.112,0.114		
(021)						
	Fe	-0.262	-0.161	0.311		
$[\mathbf{R}, \mathbf{F}_{\mathbf{P}}, \mathbf{R}_{\mathbf{I}}]^{2}$	B.	0 065 -0 298 -0 376 -0 286	0 010 0 001 0 018 0 031	0 006 -0 030 0 070 0 248		
	D D	0.376 0.286 0.065 0.267	0.018.0.030.0.010.0.001	0.072.0.243.0.0050.042		
(C_2)	\mathbf{D}_4	-0.370,-0.280,0.003,-0.207	0.018,0.050,0.010,0.001	0.072,0.243,0.003,-0.042		
	Б	0.000	0.001	0.427		
-	Fe	-0.209	0.881	0.427		
$[B_3-Fe-N_4]^{-1}$	B_3	-0.357,-0.106,-0.146	0.091,0.374,0.170	0.201,0.274,0.056		
(\mathbf{C})	N_4	-0.180,-0.252,-0.257,-0.181	0.074,0.100,0.095,0.074	0.045,0.061,0.063,0.052		
(C_s)						
	Fe	0 478	0.024	0 249		
D. E. D.	B.	0.093.0.092 -0.047	0.115.0.110.284	0.014.0.015.0.204		
D3-FC-D3	D3 D	0.003, 0.002, -0.047	0.112.0.287.0.119	0.014.0.204.0.014		
(D_2d)	D ₃	0.093,-0.047,0.093	0.112,0.287,0.118	0.014,0.204,0.014		
	-					
	Fe	-0.278	-0.026	0.536		
$[B_4-Fe-N_4]^{2-1}$	B_4	-0.266,-0.144,-0.402,-0.322	0.071,0.059,0.052,0.077	-0.049, 0.078, 0.104, 0.298		
$(\mathbf{C}_{\mathbf{i}})$	N_4	-0.279,-0.286,-0.325,-0.288	0.017,0.024,0.016,0.0191	0.029,0.070,0.042,0.098		
(CI)						
	Fe	0.312	0.656	0.329		
$[Cp-Fe-P_4]$	Ср	-0.265,-0.269,-0.269,-0.267,-0.263	0.045,0.012,0.012,0.045,-0.087	0.020,0.019,0.019,0.020,0.020		
(C_{n})	P_4	-0.129,-0.127,-0.131,-0.132	0.032,0.030,0.033,0.032	0.144,0.145,0.144,0.144		
(C_s)						
	Fe	230	0.824	0.189		
$[\mathbf{B}_{t}]_{t=1}^{t} = \mathbf{E}_{t=1}^{t} \mathbf{P}_{t} 1^{2}$	B₄	-0 178 0 029 -0 391 -0 256	0 021 0 108 0 012 0 096	-0 070 -0 011 0 095 0 249		
	D.		0.045 - 0.007 0.007 0.050	0.086.0.127.0.115.0.066		
(C_1)	14	-0.140,-0.524,-0.515,-0.114	0.043,-0.007,0.007,0.050	0.000,0.127,0.115,0.000		
	Б	0.211	0.000	0.242		
	Fe	-0.311	0.660	0.342		
$[Cp-Fe-N_4]$	Ср	-0.299,-0.298,-0.297,-0.296,-0.295	0.032,0.033,-0.069,-0.069,0.058	0.038,0.038,0.039,0.040,0.041		
(C_1)	N ₄	-0.248,-0.246,-0.248,-0.247	0.065,-0.064,-0.065,0.065	0.080,0.081,0.085,0.079		
(01)						
	Fe	0.432	0.928	0.302		
[Cn Eq Cn]	Cn	-0.251 -0.251 -0.251 -0.251 -0.251	-0.074.0.034.0.005.0.005.0.034	0.037.0.038.0.036.0.036.0.038		
[Ch-i.e-Ch]	Cn	-0.251 -0.251 -0.251 -0.251 -0.251	0 005 0 003 -0 074 0 034 0 005	0 036 0 038 0 037 0 038 0 036		
	vр	0.201, 0.201, 0.201, 0.201, 0.201	0.000,0.000, 0.07 1,0.00 1,0.000			
(D _{5h})	Fe	0.218	0.899	0.286		

No.	Reactions	ΔΗ	Δω (eV)
		(Kcal/mole)	
1	$Cp-Fe-Cp + Al_4^2 = [Cp-Fe-Al_4] + Cp^2$	-99.305	-4.592
2	$[Cp-Fe-Al_4]^{-} + Al_4^{2-} = [Al_4-Fe-Al_4]^{2-} + Cp^{-}$	-81.875	-1.022
3	$Cp-Fe-Cp + B_4^{2-} = [Cp-Fe-B_4]^{-} + Cp^{-}$	-104.845	-8.913
4	$[Cp-Fe-B_4]^{-} + B_4^{-2^-} = [B_4-Fe-B_4]^{2^-} + Cp^{-1}$	-63.361	-4.041
5	$[Al_4-Fe-B_3]^- + Al_4^{2-} = [Al_4-Fe-Al_4]^{2-} + B_3^-$	-102.995	-1.537
6	$[B_4-Fe-B_3]^{-}+B_4^{2-} = [B_4-Fe-B_4]^{2-}+B_3^{-}$	-69.878	-4.473
7	B_3 -Fe- B_3 + Al ₄ ²⁻ = [Al ₄ -Fe- B_3] ⁻ + B_3 ⁻	-153.169	-9.213
8	B_3 -Fe- B_3 + B_4^{2-} = $[B_4$ -Fe- $B_3]^-$ + B_3^-	-173.312	-13.618
9	$[Al_4-Fe-Cp]^+ B_4^{2-} = [Al_4-Fe-B_4]^{2-} + Cp^{-}$	-92.741	-4.715
10	$[Al_4-Fe-B_3]^{-} + B_4^{2-} = [B_4-Fe-Al_4]^{2-} + B_3^{-}$	-113.68	-5.229
11	$[Cp-Fe-B_4]^{-} + Al_4^{2-} = [Al_4-Fe-B_4]^{2-} + Cp^{-}$	-87.202	-0.393
12	$[B_4-Fe-B_4]^{2-} + Al_4^{2-} = [Al_4-Fe-B_4]^{2-} + B_4^{2-}$	-23.841	3.648
13	$[B_4-Fe-B_3]^{-} + Al_4^{2-} = [Al_4-Fe-B_4]^{2-} + B_3^{}$	-93.72	-0.825
14	$[Al_4-Fe-Al_4]^{2-} + B_4^{2-} = [Al_4-Fe-B_4]^{2-} + Al_4^{2-}$	-10.866	-3.692
15	$B_3-Fe-B_3+Cp^-=Cp-Fe-B_3+B_3^-$	-29.251	-1.911
16	$Cp-Fe-B_3 + Cp^- = Cp-Fe-Cp + B_3^-$	-45.733	-3.225

Table S7: Reaction enthalpy (Δ H, Kcal/mole) and reaction electrophilicity ($\Delta \omega$, eV) values of
different molecules which are involved in the substitution reactions

Table S8: Reaction enthalpy (Δ H) and reaction electrophilicity ($\Delta \omega$) values of different molecules which are involved in the substitution reactions

No	Reactions	ΔH(Kcal/mole)	Δω(eV)
1		171.014	12 459
1	B_3 -Fe- B_3 + $N_4^- = [B_3$ -Fe- $N_4] + B_3$	-1/1.014	-13.438
2	$[B_{3}-Fe-N_{4}]^{-} + N_{4}^{-} = [N_{4}-Fe-N_{4}]^{-} + B_{3}^{-}$	-/5./33	-4.605
3	$[B_3-Fe-P_4]^2 + N_4^{2^2} = [B_3-Fe-N_4]^2 + P_4^{2^2}$	-36.930	-3.339
4	B_3 -Fe- B_3 + P_4^{2-} = $[B_3$ -Fe- $P_4]^2$ + B_3^2	-134.084	-10.118
5	$[B_3-Fe-P_4]^2 + P_4^{2-} = [P_4-Fe-P_4]^{2-} + B^{3-}$	-61.692	-2.010
6	$[B_4-Fe-P_4]^{2-} + N_4^{2-} = [B_4-Fe-N_4]^{2-} + P_4^{2-}$	-23.917	-2.578
7	$[P_4-Fe-P_4]^{2-} + N_4^{2-} = [N_4-Fe-P_4]^{2-} + P_4^{2-}$	-25.863	-3.102
8	$[N_4-Fe-P_4]^{2-} + N_4^{2-} = [N_4-Fe-N_4]^{2-} + P_4^{2-}$	-25.108	-2.833
9	$[Cp-Fe-P_4]^{-} + N_4^{2-} = [Cp-Fe-N_4]^{-} + P_4^{2-}$	-34.942	-3.459
10	$[P_4-Fe-P_4]^{2-} + B_4^{2-} = [B_4-Fe-P_4]^{2-} + P_4^{2-}$	-14.997	-2.260
11	$[B_4-Fe-P_4]^{2-} + B_4^{2-} = [B_4-Fe-B_4]^{2-} + P_4^{2-}$	-32.416	-3.703
12	$Cp-Fe-B_3 + N_4^{2-} = [Cp-Fe-N_4]^{-} + B_3^{-}$	-171.850	-12.049
13	$[B_4-Fe-N_4]^{2-} + N_4^{2-} = [N_4-Fe-N_4]^{2-} + B_4^{2-}$	-12.056	-1.097
14	$[B_4-Fe-N_4]^{2-} + B_4^{2-} = [B_4-Fe-B_4]^{2-} + N_4^{2-}$	-8.498	-1.125
15	$Cp-Fe-Cp + P_4^{2-} = [Cp-Fe-P_4]^{-} + Cp^{-}$	-91.175	-5.365
16	$[Cp-Fe-P_4]^{-} + P_4^{2-} = [P_4-Fe-P_4]^{2-} + Cp^{-}$	-29.618	-1.627
17	$Cp-Fe-B_3 + P_4^{2-} = [Cp-Fe-P_4]^{-} + B_3^{-}$	-136.908	-8.590
18	$Cp-Fe-Cp + N_4^2 = [Cp-Fe-N_4]^2 + Cp^2$	-126.118	-8.824
19	$[Cp-Fe-N_4]^{-} + N_4^{2-} = [N_4-Fe-N_4]^{2-} + Cp^{-}$	-45.646	-4.102

Table 9 : Energy (E, au), electronegativity (χ , eV), hardness (η , eV), and electrophilicity (ω , eV) fo
different atoms invole in the formation of different [Mg ₄ Be ₄ -M] clusters

Atoms	E (au)	χ (eV)	η (eV)	ω (eV)	
Li	-7.491	3.087	2.529	1.884	
Na	-162.287	3.003	2.418	1.864	
Κ	-599.926	2.510	1.986	1.586	
Be	-14.671	4.445	4.671	2.115	
Mg	-200.093	3.752	3.976	1.770	
Ca	-677.576	3.085	3.069	1.551	
Sc	-760.621	3.506	4.607	1.334	
Ti	-849.290	3.648	2.098	3.172	
Cr	-1044.224	3.879	1.560	4.821	
Zn	-1779.354	4.199	5.230	1.685	
С	-37.792	5.706	4.064	4.006	
В	-24.662	4.189	4.545	1.930	

Table S10 : Point group (PG), energy (E, au), electronegativity (χ , eV), hardness (η , eV), and
electrophilicity (ω , eV) for different metal clusters

Molecules	PG	E (au)	χ (eV)	η (eV)	ω (eV)
Be_4	D_{4h}	-58.766	3.688	2.261	3.007
Mg_4	D_{4h}	-800.309	2.987	1.508	2.959
Mg ₄ Be ₄	C_{2v}	-859.276	3.526	1.792	3.468
Mg ₄ Be ₄ -Li	C_{2v}	-866.838	3.423	1.821	3.217
Mg ₄ Be ₄ -Na	C_1	-1021.618	3.301	1.792	3.040
Mg ₄ Be ₄ -K	C_{2v}	-1459.259	3.118	1.770	2.747
Mg ₄ Be ₄ -Be	C_{4v}	-874.050	3.694	2.020	3.377
Mg ₄ Be ₄ -Mg	C_{2v}	-1059.404	3.545	1.874	3.353
Mg ₄ Be ₄ -Ca	C_{2v}	-1536.917	3.245	1.872	2.812
Mg ₄ Be ₄ -Sc	C_{4v}	-1620.007	3.319	1.805	3.051
Mg ₄ Be ₄ -Ti	C_{4v}	-1708.722	3.580	1.562	4.103
Mg ₄ Be ₄ -Cr	C_{2v}	-1903.673	2.906	1.131	3.734
Mg ₄ Be ₄ -Zn	C_{2v}	-2638.652	3.766	1.881	3.770
Mg ₄ Be ₄ -B	C_{4v}	-884.168	3.401	1.954	3.752
Mg ₄ Be ₄ -C	C_{4v}	-897.466	3.830	2.399	2.410

Table S11: Nucleus independent chemical shift (NICS(0), ppm) values at different rings of the molecules

Molecules	NICS(0)	NICS(0)	Molecules	NICS(0)	NICS(0)
	Ring(Mg ₄)	Ring(Be ₄)		Ring(Mg ₄)	Ring(Be ₄)
Mg ₄ Be ₄	-10.03	-15.13	Mg ₄ Be ₄ -Sc	-18.94	-66.30
Mg ₄ Be ₄ -Li	-10.87	-12.04	Mg ₄ Be ₄ -Ti	-2.92	-98.78
Mg ₄ Be ₄ -Na	-10.39	-11.67	Mg ₄ Be ₄ -Cr	-55.33	-471.90
Mg ₄ Be ₄ -K	-11.02	-10.39	Mg ₄ Be ₄ -Zn	15.80	-3.057
Mg ₄ Be ₄ -Be	-12.29	-31.16	Mg ₄ Be ₄ -B	-25.51	-56.80
Mg ₄ Be ₄ -Mg	8.18	-11.59	Mg ₄ Be ₄ -C	-32.33	-67.39
Mg ₄ Be ₄ -Ca	-4.62	-25.78	_		

Formation	ΔΗ	Δω
Reactions	(Kcal/mole)	(eV)
$Mg_4 + Be_4 = Mg_4Be_4$	-123.979	-2.498
$Mg_4Be_4 + Li = Mg_4Be_4-Li$	-4.456	-0.780
$Mg_4Be_4 + Na = Mg_4Be_4 - Na$	-34.067	-0.743
$Mg_4Be_4 + K = Mg_4Be_4 - K$	-35.452	-0.556
$Mg_4Be_4 + Be = Mg_4Be_4 - Be$	-23.163	-2.206
$Mg_4Be_4 + Mg = Mg_4Be_4 - Mg$	-21.830	-1.885
$Mg_4Be_4 + Ca = Mg_4Be_4-Ca$	-40.587	-2.206
$Mg_4Be_4 + Sc = Mg_4Be_4-Sc$	-68.793	-1.751
$Mg_4Be_4 + Ti = Mg_4Be_4 - Ti$	-97.014	-2.537
$Mg_4Be_4 + Cr = Mg_4Be_4 - Cr$	-108.320	-4.555
$Mg_4Be_4 + Zn = Mg_4Be_4 - Zn$	-14.264	-1.383
$Mg_4Be_4 + B = Mg_4Be_4 - B$	-142.402	-1.646
$Mg_4Be_4 + C = Mg_4Be_4 - C$	-247.214	-5.064

Table S12: Formation reactions of different metal clusters and their reaction enthalpy (ΔH ,
Kcal/mole) and reaction electrophilicity ($\Delta \omega$, eV) values

Table S13: Atomic charges $(Q_k(NPA))$ and Fukui functions $(f_k^+, f_k^-, eV, (NPA))$ and philicity $(\omega_k^+, \omega_k^-, eV, (NPA))$ values for nucleophilic and electrophilic attacks respectively for different metal cluster

Molecules	Unit	Atomic	f_k^+ (NPA)	f_k (NPA)	ω_k^+ (NPA)	ω_k (NPA)
		Charge	•	•		
		(Q_k) (NPA)				
	Mg_4	0.346, 0.347	0.136, 0.137	0.099, 0.099	0.472, 0.474	0.343, 0.342
Mg ₄ Be ₄		0.346, 0.346	0.136, 0.137	0.099, 0.099	0.473, 0.474	0.343, 0.342
(C_{2v})	Be_4	-0.211, -0.482	0.096, 0.130	0.156, 0.148	0.333, 0.451	0.541, 0.513
		-0.483, -0.210	0.130, 0.098	0.148, 0.153	0.452, 0.339	0.514, 0.530
	Mg_4	0.333, 0.334	0.148, 0.148	0.154, 0.155	0.476, 0.476	0.497, 0.498
Mar Ber-Li		0.336, 0.336	0.148, 0.148	0.155, 0.154	0.477, 0.477	0.497, 0.498
(C)	Be_4	-0.259, -0.564	0.049, 0.091	0.046, 0.100	0.158, 0.292	0.148, 0.321
(C_{2v})		-0.575, -0.263	0.078, 0.047	0.091, 0.047	0.250, 0.153	0.294, 0.150
	Li	0.322	0.143	0.097	0.459	0.314
	Mg_4	0.339, 0.328	0.147, 0.145	0.145, 0.143	0.446, 0.440	0.441, 0.435
Mg4 Be4-Na		0.326, 0.315	0.138, 0.135	0.143, 0.140	0.419, 0.410	0.434, 0.425
(C_1)	Be_4	-0.287, -0.569	0.039, 0.045	0.048, 0.067	0.117, 0.136	0.146, 0.203
(C_1)		-0.491, -0.252	0.106, 0.044	0.112, 0.052	0.323, 0.133	0.341, 0.157
	Na	0.291	0.203	0.151	0.616	0.458
	Mg_4	0.313, 0.314	0.136, 0.136	0.137, 0.137	0.374, 0.374	0.377, 0.375
Mg, Ber-K		0.313, 0.314	0.136, 0.136	0.137, 0.137	0.375, 0.374	0.378, 0.375
(C_2)	Be_4	-0.302, -0.567	0.036, 0.063	0.058, 0.096	0.099, 0.173	0.159, 0.264
(C_{2v})		-0.568, -0.298	0.063, 0.037	0.095, 0.052	0.173, 0.102	0.262, 0.143
	Κ	0.482	0.256	0.150	0.704	0.413
	Mg_4	0.343, 0.344	0.106, 0.106	0.088, 0.088	0.358, 0.358	0.298, 0.298
Ma. Ba. Ba		0.344, 0.344	0.106, 0.106	0.088, 0.088	0.358, 0.359	0.298, 0.298
$\log_4 \text{ De4-De}$	Be_4	-0.400, -0.401	0.081, 0.081	0.139, 0.137	0.275, 0.274	0.470, 0.463
(C_{4v})		-0.401, -0.401	0.081, 0.081	0.137, 0.139	0.274, 0.273	0.463, 0.468
	Be	0.230	0.250	0.095	0.846	0.322
	Mg ₄	0.266, 0.266	0.105, 0.105	0.163, 0.163	0.352, 0.352	0.547, 0.548
		0.264, 0.264	0.104, 0.104	0.164, 0.164	0.348, 0.348	0.550, 0.551
$Mg_4 Be_4-Mg$	Be_4	-0.269, -0.489	-0.020, 0.232	0.050, 0.078	-0.050, 0.779	0.166, 0.261
(C_{2v})		-0.491, -0.270	0.229, -0.020	0.080, 0.050	0.767, -0.050	0.267, 0.167
	Mg	0.459	0.153	0.088	0.512	0.297
	Mg4	0.270, 0.270	0.090, 0.090	0.297. 0.297	0.254, 0.257	0.236, 0.234
	0	0.270, 0.270	0.090, 0.091	0.297, 0.297	0.252, 0.254	0.235, 0.234
Mg ₄ Be ₄ -Ca	Be_4	-0.311, -0.594	-0.000, 0.172	0.205, -0.010	-0.000, 0.483	0.576, -0.035
(C_{2v})	·	-0.594, -0.310	0.170, 0.002	-0.010, 0.202	0.477, 0.007	-0.039, 0.569
	Ca	0.729	0.295	0.286	0.830	0.803
	Mg_4	0.320, 0.319	0.082, 0.081	0.083, 0.083	0.249, 0.247	0.252, 0.253
Ma Da Ca	C	0.320, 0.320	0.079, 0.079	0.082, 0.082	0.243, 0.240	0.251, 0.251
Mg ₄ Be ₄ -Sc	Be_4	-0.093, -0.090	0.082, 0.081	0.081, 0.083	0.289, 0.289	0.247, 0.253
(C_{4v})		-0.090, -0.093	0.079, 0.079	0.080, 0.082	0.271, 0.284	0.245, 0.251
	Sc	-0.913	0.082	0.344	0.940	1.048
	Mg_4	0.357, 0.357	0.128, 0.128	0.059, 0.059	0.527, 0.527	0.241, 0.241
Mar Bar Ti	-	0.357, 0.357	0.128, 0.128	0.059, 0.059	0.527, 0.527	0.241, 0.241
(C)	Be_4	0.068, 0.069	0.131, 0.132	0.107, 0.106	0.540, 0.541	0.440, 0.437
(C4v)		0.069, 0.068	0.131, 0.132	0.106, 0.107	0.541, 0.540	0.437, 0.440
	Ti	-1.703	-0.040	0.337	-0.160	1.384
Mg ₄ Be ₄ -Cr	Mg ₄	0.323, 0.323	0.122, 0.123	0.143, 0.143	0.455, 0.458	0.535, 0.534
(C_{2v})		0.323, 0.324	0.122, 0.123	0.143, 0.143	0.456, 0.459	0.535, 0.533
,	Be_4	0.036, -0.115	0.008, 0.019	0.021, 0.003	0.030, 0.071	0.079, 0.012
		-0.114, 0.038	0.019, 0.010	0.002, 0.091	0.072, 0.037	0.009, 0.071

	Cr	-1.139	0.454	0.382	1.696	1.426
	Mg_4	0.254, 0.254	0.102, 0.099	0.162, 0.162	0.385, 0.375	0.609, 0.611
Ma Do 7n		0.256, 0.255	0.104, 0.101	0.161, 0.161	0.393, 0.382	0.607, 0.609
$\log_4 \text{Be}_4-\text{ZII}$	Be_4	-0.233, -0.395	-0.011, 0.272	0.022, 0.134	-0.040, 1.025	0.082, 0.505
(C_{2v})		-0.391, -0.234	0.277, -0.020	0.128, 0.023	1.043, -0.080	0.483, 0.089
	Zn	0.233	0.075	0.046	0.285	0.174
	Mg ₄	0.356, 0.355	0.956, 0.955	0.113, 0.115	0.359, 0.355	0.425, 0.433
Mg ₄ Be ₄ -B (C _{4v})		0.355, 0.356	0.956, 0.955	0.113, 0.115	0.359, 0.356	0.425, 0.432
	Be_4	0.489, 0.482	0.177,0.109	0.089, 0.094	0.438, 0.408	0.333, 0.353
		0.482, 0.481	0.109, 0.109	0.094, 0.097	0.410, 0.409	0.351, 0.365
	В	-3.356	0.175	0.169	0.658	0.635
	Mg_4	0.351, 0.353	0.104, 0.092	0.094, 0.094	0.251, 0.221	0.226, 0.226
Mg ₄ Be ₄ -C (C _{4v})		0.351, 0.352	0.090, 0.106	0.094, 0.094	0.218, 0.255	0.227, 0.226
	Be_4	0.487, 0.489	0.034, 0.251	0.130, 0.116	0.082, 0.605	0.314, 0.279
		0.487, 0.484	0.248, 0.033	0.122, 0.128	0.598, 0.079	0.294, 0.308
	С	-3.353	0.042	0.129	0.100	0.311

Table S14: Energy (E, au), Point Group (PG), Electronegativity (χ , eV), Chemical Hardness (η , eV) and Electrophilicity (ω , eV) values of two different Be₆-Mg isomers.

Isomers	E (a.u.)	PG	χ (eV)	η (eV)	ω (eV)
Be_{6} -Mg (I)	-288.370	C _{6v}	3.715	1.949	3.541
Be ₆ -Mg (TS)	-288.364	C ₂	3.848	1.952	3.792
Be_6-Mg (II)	-288.370	C _{6v}	3.713	1.949	3.537

Table S15: Nucleus independent chemical shift (NICS(0),ppm), atomic charges (Q_K , NPA) and Fukui function (fk^+ , fk^- , eV, (NPA)) values for nucleophilic and electrophilic attacks respectively of two different Be₆-Mg isomers.

Isomers	Unit	NICS(0)	Atomic Charges	fk^+ (NPA)	fk ⁻ (NPA)
			(Q _K)		
Be ₆ -Mg (I)	Be ₆		-0.042, -0.042, -0.042	0.115, 0.156, 0.157	0.155, 0.155, 0.155
(C y)	Ŭ	0.03	-0.042, -0.042, -0.042	0.115, 0.154, 0.154	0.155, 0.155, 0.155
(C_6V)	Mø	0.95			
	1115		0.252	0.148	0.069
Be ₆ -Mg (II)	Be ₆		-0.042, -0.041, -0.041	0.155, 0.1185, 0.159	0.156, 0.1536, 0.153,
(C y)	, , , , , , , , , , , , , , , , , , ,	1.00	-0.041, -0.042, -0.042	0.156, 0.1516, 0.112	0.154, 0.157, 0.157
(C_6V)	Μσ	1.00			
	mg		0.250	0.148	0.069